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Section 1 

INTRODUCTION AND SUMARY 

Q-ßwitched laser pulces have found wide applicatione in diverse areas of pure 
and applied research. Some fields which have been opened to investigation by the 
r.vailatllity of euch pulses ir?-!'.:?.^ £n- Ireakdown at optical frequencies, plasma 
production for thermonuclear research, optical harmonic generation and parametric 
amplification, stimulated scattering effects and coherent propagation effects. Q- 
switeched pulses have also been used for ranging and guidance systems, high speed 
photography, medical research, precision machining and other applications. The min- 
imum pulse durections obtainable with the various existing Q-switching techniques arc 
limited to approximately 10" seconds because of the time required for the buildup 
of the pulse in the laser cavity. 

The advent of the mode-locked laser has brought abouc a four to five order of 
magnitude decrease in pulse duration, from 10"° sec to less than 10"12 sec and a three 
order of magnitude increase in peak power, from 10^ watts to 10  watts or greater. 
Detection systems capable of resolving events on a time scale as short as IO -^ sec 
have been developed. It is expected that these developments should open more areas 
of investigation and should lead to additional scientific, military and commercial 
applications. The short time duration of the pulses allows the investigation of 
atomic and molecular processes and coherent interaction effects on a time scale that 
was previously inaccessible to direct observation and high power available with 
these pulses allows the investigation of nonlinear effects that were previously 
unobservable. 

The United Aircraft Research Laboratories have been conducting under the present 
contract a continuing investigation of short time duration laser pulses and their 
interactions with matter. This investigation, while primarily concerned with the 
picosecond duration pulses produced by mode-locking, has also been extended to tran- 
sient phenomena involving longer pulses. During the period covered by this report, 
work has been conducted in the following areas: (a) the analysis of the propagation 
of ultrashort pulses in a resonant medium, (b) the analysis of the generation of 
Cerenkov-like radiation by nonlinear optical effects, (c) the development and 
demonstration of a novel technique for the measurement of a phase structure of 
picosecond pulses, (d) the study of stimulated transient Raman Scattering in liquids 
and gases,(e) the development of extremely fast pumping sources for organic dye 
lasers, (f) the mode locking of a flashlamp pumped organic dye laser, (g) the demon- 
stration of traveling wave laser action in an organic dye, (h) the investigation of 
the possibility of obtaining stimulated emission from laser produced plasmas, (i) 
the investigation of nonlinear polarization effects in anisotropic molecular liquids. 

In the area of the analysis of pulse propagation, the major portion of time has 
been directed toward the formation of a unified synthesis of advances thus far 
achieved by various workers in obtaining analytical results in the field of ultra- 
short optical pulse propagation. In the course of reformulating the results of these 
workers, a number of minor extensions and simplifications of their work have been 

^fi: * 
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obtained. Although the results at  some Investigators have not been incorporated at 
this time, it is expected that the material reported herein will constitute a major 

step toward the compilation of a complete summary of the current status of this field. 

During this period, consideration was given to the "dc" component of the nonlinear 

polarisation induced in a dielectric by the pacsage of a high power optical pulse. 

This component constitutes a polarization source that moves through the dielectric with 

the group velocity of the optical pulse. This polarization can lead to Cerenkov radia- 

tion at frequencies whose velocity of propagation is less than that of the pulse. This 

effect is of fundamental interest in itself as it represents a completely new technique 

for the generation of Cerenkov radiation.  It could have application to millimeter and 

submillimeter wave generation and noise sources. Of even more general importance is 

the realization that many experiments in beam-wave interactions that can be performed 

with difficulty using megavolt electron beams can be performed easily using the non- 

linear polarization assoniated with a propagating picosecond pulse. 

Since the first measurement of the time duration of the pulses produced by mode- 

locking of neodymium-glass lasers, it has been apparent that the duration of the pulses 

are considerably in excess of the minimum possible duration as determined from the 

reciprocal of the bandwidth. A time-bandwidth product in excess of unity implies 

a phase or amplitude structure in the pulses. The first measurement of this structure 

was obtained at this laboratory in 1968.  It was found that the pulses could be com- 

pressed in time by passing them through a dispersive optical system. The dispersion 

of the system that was capable of compressing the pulses was such that the transit 

time increased with increasing wavelength. The compression of the pulses indicated 

the presence of a linear component of the frequency vs time of the pulses, with 

longer wavelengths or lower frequencies coming earlier. The compression also 

indicated that a significant fraction of the observed bandwidth was due to the fre- 

quency sweep. While the compression experiments serve to demonstrate the presence 

of a frequency sweep, it is difficult to extract more detailed information about 

the phase structure from them. During this reporting period a technique has been 

devised to extract the maximum available information on the phase structure of the 

pulses subject to the constraint of present detectors. The information that can be 

obtained from this technique consists of essentially /"N resolvable points on a fre- 

quency vs time curve. Here N represents the time-bandwidth product of the pulse. 

Initial experimental results have been obtained and indicate that the technique 

works as designed. These results also are consistent with the compression experiments 

and reconfirm the presence of a linear component of the frequency sweep. 

Experiments in stimulated scattering with picosecond pulses have continued. 

During this period emphasis has been placed on the investigation of stimulated Raman 

scattering in liquids and gases, and a number of new results have been obtained. The 

essential difference between stimulated Raman scattering with nanosecond duration 

pulses from a Q-switched laser and that produced with picosecond duration pulse from 

a mode-locked laser lies in the finite build-up time of the associated phonons.  In 

the case of picosecond pulse excitation, the phonon population does not reach its 

steady state value and the transient nature of the scattering must be considered. An 

important consequence of the transient nature is the fact that in the extreme tran- 

sient limit, the Raman gain is determined not by the peak value of the spontaneous 



J920U79-21 

Raman cross section but by the total area under the curve of cross section vs fre- 

quency. It is possible therefore to excite Raman lines in the transient limit 
that cannot be excited in the steady state due to competition with other narrower 
lines that have a higher peak cross section but lower integrated cross section. 

Using a mode-locked ruby laser that produced pulses of 5 - 10 picoseconds 
duration and approximately 56 watts of power, transient stimulated Raman scattering 
was observed in all liquids that were tested including liquids such as water, carbon 
tetrachloride and methanol in which stimulated scatter"ng is normally difficult to 
obtain. Energy- conversions as high as 20% were observeu together with multiple order 
Stokes generation ai  beam trapping. Stimulated scattering was also observed in a 
variety of gases including N , 0 , CO , NO, SFg, CH, , C H, , C.Hg, HC1 and HBr. Prior 
to these experiments, stimulated Raman scattering had been observed only in H , D 
and CH, . Self trapping in a collimated beam was observed for the first time in 
gases, and evidence of a strong optical Stark shift was observed. It is felt that 
stimulated Raman scattering could have important application in the determination 
of relaxation rates of materials of interest for chemical lasers. Tue scattering 
provides a means of selectively exciting a non-equilibrium population on a very 
short time scale. The subsequent decay can then be monitored to determine the 
relaxation rates. 

The work on stimulated Raman scattering was carried out in collaboration with 
N. Bloembergen, R. L. Carman, F. Shimizu and J. Reintjes of Harvard University. All 
of the experimental results on stimulated scattering reported herein were obtained 
at United Aircraft Research Laboratories. 

The continuing effort in organic dye laser technology has led to improved pumping 
and modulation capabilities. Dye lasers are capable of producing energetic short 
pulses at a wide variety of wavelengths and should have significant military and 
industrial as well as basic research applications. 

Initial investigations of the feasibility of obtaining stimulated emission 
from laser produced plasmas have been carried out. Picosecond pulse excitation 
provides an extremely fast pumping rate and might be used to populate levels having 
a very rapid decay time. With such a pumping technique it might be possible to 
obtain stimulated emission at ultraviolet or shorter wavelengths. Further experi- 
ments in this area will be carried out upon completion of a corporation owned 10 joule, 
.1 nanosecond neodynium laser facility. 

The extension of the ideas of magnetic adiabatic passage into the optical region 
and the first experimental demonstration of the optical adiabatic rapid passage were 
carried out under the present contract and are reported in detail in the Third Annual 
Report, H920V79-13, March 31; 1969- A separate research program on optical adiubatic 
passage in gases has been established and is being funded under contract with the 
Army Research Office, Durham, North Carolina (Contract DAHC0i)-70=C-00l4). Work in 
this area under the present contract has, therefore, been discontinued. 

• . 
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Section 2 

ANALYTICAL DESCRIPTION OF ULTRASHORT OPTICAL PULSE PROPAGATION 
IN A RFSONANT MEDIUM 

2.1 Introduction 

Recent advances in laser technology have led to the production of coherent 

optical pulses having durations in the picosecond (ID"12 sec ) regime^ '^. Such time 

intervals are comparable to or shorter than the relaxation times associated with the 

energy levels of many atomic systems. The interaction of radiation with matter on 

such short time scales gives rise to phenomena which, as a result of quantum mechanical 

coherence effects, cannot be described by the rate equation analysis developed 

previously v3"5J for the treatment of much longer pulses. 

The novelty of the effects which may appear in the short time resonant response 

of atomic systems has been brought out quite strikingly by the recent discovery of 

self-induced transparency ^»i»^). In this effect, the leading edge of an optical 

pulse is used to invert an atomic population while the trailing edge returns the 

population to its initial state by means of stimulated emission. The process is 

realizable if it takes place in a time that is short compared to the incoherent 

damping time of the resonant atomic systems, i.e., to the homogeneous broadening 

time of the medium. When all conditions for this process are met, it is found that 

a steady state pulse profile is established and that this pulse envelope then propa- 

gates through the medium at a velocity which may be considerably less than the light 

velocity In the medium. What is perhaps most remarkable is that even those atoms 

that are off resonance due to inhomogeneous broadening can partake of this process 

in such a way that they are returned to their initial state. Within the theoretical 

framework that has been used to describe this effect it has been shown ^<>°'  that 

such steady state propagation can take place only if the profile of the electric 

field is of a special form, namely that of a hyperbolic secant. Many salient features 

of this effect have been considered^'' since its discovery. The possibility of 

analogous effects in semiconductors has also been proposed^'-^ and somewhat similar 

effects have been observed in the study of neuristor waveforms. 

In addition to the anomalous transmission property of ultrashort optical pulses, 

the amplification of such pulses bas also drawn considerable attention. A number of 

analytical results have been obtained here as well'^lO^ll). One expects that ampli- 

fication processes will ultimately be limited by non-resonant loss mechanisms.  If 

these are introduced in a phenomenological way through a conductivity, then the ad 

hoc assumption that there is a steady state pulse propagating at the light velocity 

may be verified by direct computation. 

Whenever it becomes necessary to extend the range of validity of a theory to 
encompass new phenomena, it is useful to seek limiting cases of the new formal ism'"> ■'■2, 

-*>     '  which admit of exact solutions of the type referred to above. While the 

experimentalist is rarely moved by theoretical descriptions that fail to provide 

for all facets of a phenomenon as it is known to exist in the experimental situation, 

such as relaxation times, inhomogeneous broadening, etc., it should be emphasized 
that many of the most interesting effects in ultra-short pulse propagation appear 

,..,..*». sj.i   -;. ■■'..— 
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already in muv-h simpler theoretical contexts and an understanding of even these 
simpler equations, as opposed to the new generation of numerical results, Is far from 
complete. The most promising method of attack Is clearly through a simultaneous 
application of both analytical and computational techniques and the field of optical 
pulse propagation provides an ideal opportunity for the application of this "synergetld* 
approach. In fact, self induced tmnnparency was discovered from an analysis of 
numerical solutions of the appropriate equations. 

The present paper summarizes the success that has thus far been achieved in 
describing the novel aspects of ultrashort optical pulse propagation by analytical 
treatment. In addition to the above-mentioned results, two relatively simple models 
have been devised which describe a number of other effects that have been observed 
both experimentally'0»1" and as output from machine computations based upon more 
complete theoretical descriptions'i2"'. The first model'^»^' is one in which in- 
homogeneous broadening is neglected. The physical situation most closely related to 
such a model is that of prooagation under conditions of extreme saturation broaden- 
ing^ ' **,    Although the problem under consideration involves a coupling between 
radiation and matter that is too strong to be treated by perturbation theory, a fairly 
extensive analytical treatment of this model is still possible since it expresses this 
interaction in terms of a single nonlinear partial differential equation which arose 
long ago in differential geometry. The techniques developed about the turn of the 
century for obtaining solutions to this equation may be employed to great advantage. 

Certain other phenomena, notably that of photon echo  ~  , require for their 
explanation the relative dephasing of atoms that results when inhomogeneous broadening 
is present. This effect is also an example of the collective superradiant state^'  ' 
in which energy is radiated coherently into the electromagnetic field. Here again, it 
Is possible to construct a soluble model^2^' in which the reaction of stimulated 
emission back on the incident wave is taken into account. If one is willing to forgo 
consideration of the detailed structure of pulse shapes, the time dependence of the 
pulse may be assumed to be that of a delta function and Interest confined to the 
spatially dependent amplitude of such delta function pulses. Only the time integral 
of such a pulse shape is meaningful, of course, but such a time integral has been 
shown to be precisely the quantity of interest in the treatment of ultrashort pulses. 
The area theorem''>"', which is so useful in understanding short pulse phenomena, is 
also found to govern the spatial evolution of the amplitude functions introduced in 
this model. 

Although much of the physical insight required for an understanding of these 
propagation effects may be obtained from a consideration of the interaction of light 
with a system of two-level atoms, it should be emphasized that the results thus 
obtained may require modification when level degeneracy is included'"»1"). 

2.2 Basic Equations 

We begin by summarizing the standard semiclassical description of the interaction 
of an electromagnetic wave with an assembly of two-]evel systems. The optical field 
in the form of a plane polarized electromagnetic pulse may be characterized by its 
electric field vector E(r,t) which satisfies the usual wave equation 

5 
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,2r.*JLZ   ^_ 7 ^"c^TTcT"^     "cS'TT*" (2.1) 

where o 1B a conductivity that Is Introduced to simulate nonresonant losses In the 
medium, c Is the velocity of light in the medium and P in the polarization of the 
medium that is induced by the electromagnetic wave.    For a medium consioting of an 
assemblage cf noninteracting two-level systems distributed with a uniform density a0, 
this polarization is nop where p is the polarization of an individual two-level 
system. 

The polarization of an individual system may in turn be obtained from its micro- 
scopic description by the usual prescription 

p = Tr(fP) (2.2) 

where o is the density matrix of the two-level system'2", and   £  is the polarization 
operator.    The time dependence of p is given by the quantum mechanical Liouville 
theorem 

MlfH'H     -0 (2.3) 

where   TC   io the total Hamiltonian of an individual two-level system.    The time depen- 
dence of an arbitrary operate*,    Ö is governed by the relation 

^•'•j?*M (2.M 
For later use,  it proves convenient to recognize that operators not containing 
explicit time dependence also satisfy 

"ftwM-* dt ' 
(2.5) 

The Hamiltonian of a two level system interacting with a classical electromagnetic 
field may be adequately represented by 

where 5C    is the Hamiltonian of the Isolated two-level system and 
o 

(2.6) 

v = -|   P (2.7) 

in the interaction energy in dipole approximation. 

The wave function for the isolated two-level system may be written 

^lr.t)8  o0lt)u0ltl + Obtt)u^L) (2.8) 
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vtwrt u   and u.  *r* »Ictnfuoetiooa of the oystem and Mtisfy 

^"o* c•ü•'0, 0'b l2-9) 

Such *    rgy «iinrunctlone provide the specific reprosentationo 

^o 

when P0/3« -*/d5r-ua*Iu/9 

(2.U) 

V0-'^ 
and tne levels are Labeled such that E > E. . The vanishing of the diagonal elements 
in P signifies the assuoed absence of any permanent dipole moment in the system under 
consideration. 

In addition to the polarization P, the difference in population between upper and 
lower states n, is also of interest and may be expressed in the form 

"•"o^oo" ^bb'' "oTrl^,) (2.12) 

wnere a    is thf» Pauli spin matrix z 

./l 0 
1  *0.|/ (2.13) 

The time dependence of p can be conveniently obtained by taking the trace of the 

operator equation 

*'HH.*|,*|Tr •?! (2-1^ 

which follows from Eq.   (2.U).    With the representations given above,  the right-hand 
side of this eouation vanishes while 

||f.H.*o| '^ob2? (2.15b) 

and 

PsbPbo      0 

HH'rt-«t-(0 .PBOPJ (2.15c) 
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where 

^obs Eo-Eb 
(2.16) 

Equation (2.12) therefore reduces to 

2    2ü'ab ^ 

(2.17) 

Application of the trace operation converts this operator equation into 

where it has been assumed that P , = P, - T '    The factor of l/3 in parenthesis is 
to be included if all possible spatial orientations of the two level systems are 
permitted'26^75 ). 

From a direct multiplication of the quantities involved there follows 

1   ^ob r  «i j:.        U.P] (2tl9) ifip» [jp.i 

On the other hand, multiplication of Eq. (2.3) by n CT and application of the trace 
o z 

operation yields 

mri^0E'Tr^[P.cTz]| (2>20) 

Calculation of the trace of Eq.   (2.19) then finally leads to the equality 

7|s  — E • P 
ti^ob ~ (2.21) 

Equations (2.l8) and (2.21) provide a convenient starting point for describing the 
response of a two-level system to an external electromagnetic field. 

Having formulated the response of the two-level systems to the incident optical 
field, we now turn to a consideration of the reaction of the medium back upon the 
incident wave.  It is the self-consistent evolution of these two processes that is 
the essence of the problem under consideration. On the right-hand side of Eq. (2.1), 
the term 9^p/3t2 may be approximated by -co^p where u)0 is the carrier frequency of 
the incident pulse. This follows immediately if ujg^, is replaced by u)0 in Eq. (2.18) 
and the term of the right-hand side of that equation is neglected. Neglect of this 
term is equivalent to a neglect of the backscattered wave that is produced as the in- 
cident wave traverses the medium. From Eqs, (2.1) and (2.18), one sees that this 
neglect is permissible provided that n ^^/'Hu) « 1 which will be nearly always 
satisfied. 

8 
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Since even the shortest pulses produced to date contain many optical cycles, 
it is appropriate to write the electric field in terms of a carrier wave as well as 
envelope and phase functions |,(r,t) and $(r,t) respectively which vary slowly on 
the length and time scales of the carrier wave. Hence we write 

E(r,t) = En^(r,t)cos knr-ajnt + <Mr,t) (2.22) 

and assume UJ 8 » 9£/at, k 5 » ä £/ax plus similar inequalities for $. A character- 
istic field magnitude E has also been extracted from the amplitude. Because of the 
assumption that E(r,t) and $(r>t) vary slowly compared to the carrier wave, Eq. (2.1) 
may be reduced to a much simpler form. In particular, only first derivatives of 
g (r,t) and $(r,t) need be retained on the left-hand side of this equation when It 
is expressed in terms of P and $. The solution thus obtained is customarily referred 
to as the solution in the slowly varying envelope approximation. 

In general, it is appropriate to consider not a single transition frequency u)a^ 
but a spread in transition frequencies about ui^» so called inhomogeneousbroadening. 

It is convenient to analyze the situation in which this distribution is symmetric about 
tuab and the carrier frequency of the incident optical pulse is at this frequency, 
i.e., u)0 = u^b- 

Equation(2.l), specialized to a plane wave traveling in a positive x direction 
now becomes 

(j£ + 2 7ra^sin 3>(x,t) f ^C08 <S>(x,t) = ^f0 /dAcuQ(Acü)p(Acütx .t) 

(2.23) 
where 

and AUJ = a) - tUo«    Although the idealization of an infinite plane wave front   is 
convenient for theoretical purposes,   it should be emphasized that transverse   mode 
structure may be important in experimental situations. 

The spectrum g(A'i)) which characterizes the  inhomogeneous broadening is assumed 
to be normalized so that 

/•CO 
j    dAuglAaj) » l 
•loo (2.2lm) 

The causal Green's function for Eq.   (2.l8),   i.e.,  the solution of 

^ +cü0b
2G -■  -S(t-t') 

dt2 (2.2l|b) 
which satisfies G = 0 for t < t'   is 

|t.)=_J_^(1_t')sin        (t-t') 
^ob (2.25) 
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in which u(t)  is the unit step function.    Multiplication of Eqs.   (2.18) and (2.25) hy 
G^lt') and p respectively,  subtracting and integrating over all time yields 

p(Acü,x,t) =-2e>n rdt'sincü(t-t')A (Aüj.x.t^lx.t'lcos <|>(x,t') 
(2.26) 

where A = n/n0 , and 0.,  the Rabi frequency, is given by Q = E0 ^"/ti . The factor of 
1/3 due to orientational averaging is neglected. This expression for the polarization 
may now be decomposed into parts which are in phase and TT/2 out of phase with the 
electric field. One finds that 

p = !P /5(Aü;,x,t)sin(<I>(xt))+i (Acü,x,f)cos(*(x,t))] 

(2.2?) 

where 

(?= n/dt'i:(x,t,)A(Acü,x,t')cos fAcü(t-t')+<Mx,t)-<Mx,t,)l 
•'-00 L J 

/•* r i 
2  =-n/ dt'Ax.t^lAcü.x.Osin Atü(t-t') + 0(x,t)-^(x,t') 

(2.28a) 

(2.28b) 

-00 

whore 

^+27ro-^=(ca,/n)t/dAwg(A(u)^(Aw,x.t) (2-29a) 

C -^ « -(ca'/^jdAcügiAaJ^lAuj.x.t) (2.29b) 

a =2 7rn0üJ0s
:' /-he 

(2.30) 

The functions P  and 2 are readily shown to satisfy the differential equations 

t^^ + ^f)2 (2.31a) 

10 

In obtaining this result, terms near the second harmonic of UJQ have been discarded. 
However, it should be emphasized that in obtaining these results there has been no 
assumption that ft  , 2  , and A vary slowly compared to the carrier wave. 

Equation (2.23) may now be decomposed into the pair of relations 
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When time dependence near the second harmonic of cu is also neglected in Eq. (2.21) 
it is equivalent to 

at "   "^V   ^o at / (2.32) 

When the slowly varying envelope approximation is used, the second term on the right- 
hand side may be discarded. It is convenient to introduce the transformation 

t = fl(t-x/c),C =(ß«/c)x (2.33) 

The constant e is essentially the ratio of energy stored in the medium to the energy 
of the wave, i.e. 

Neglecting the conductivity at this point, Eqs. (2.29) are transformed to 

■%-  =/   dAa;g(Au;)/)(A<T) 
(2.35) 

(2.36) 

while Eqs. (2.31) and (2.32), in the slowly varying envelope approximation, become 

ff'-CP (2-37a) 

ff^+(,+ ^> (3,37.) 

ff = -('+^> (2-37c) 

where f = Atu/n- Equations (2.37) describe how the field amplitude P and phase $ 
determine ft , 2   and A for a two-level system that is off resonance by an amount 
AUJ. Equations (2.35) ani (2.36) show how the polarization due to a distribution of 
such systems reacts back on the amplitude and phase. 

Equations (2.37) also arise in nuclear magnetic resonance studies in which an 
oscillating magnetic field interacts with an assemblage of two level systems which 
possess a magnetic moment. Such studies have been confined to samples that are of a 
sufficiently small size that the reaction of the induced field back on the exciting 
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field could be ignored. Equations (2.37) may then be solved for a specified external 
field. This is not the case in the situation envisioned here. A satisfactory 
description of optical pulse propagation is only obtained when Eqs. (2.36) and 
(2,37) are solved self consistently. 

At this point, it may be noted that Eqs. (2.35) and (2.37) contain two conserva- 
tion laws. Conservation of energy follows upon multiplication of Eq. (2.35) by 8 
and introduction of Eq. (2.37a) which yields 

I 4|_ + JL f^dAo^Au^O (2.38 
<i dt   öT ./-QO 

Multiplication of Eqs. (2.37) hy A ,/^ and 2. respectively along with sum-nation of 
the resulting equations yields an exact differential which is equivalent to 

/V2+/?2+^2=i (2.39) 

In this result, a constant of Integration has been set equal to unity since in the 
usual applications of the theory one has P (£, -«) = 2. (CJ-00

) = 0; ^ (C> "00) = ±l• 
The form of Eq. (2.39) enables one to interpret the response of a two level system 
in terms of the motion of a vector on the surface of a sphere xn a. ß , 2 , ft    space. 

2.3 Self-Induced Transparency and the Area Theorem 

Up to the present time, the full set of equations given by Eq. (2.35 - 2.37) 
has received little attention. However, if one adopts the consistent set of assumptions 
that the phase term y  is initially zero, that the carrier frequency is at the center 
of a symmetrically broadened line (i.e., g(A(D) = g(-Au)), and that ^ is an odd function 
of Au). Then from Eq. (2.36) one sees that the source term governing variations in co 
is zero so that $ will remain zero. This form of the theory, particularly with the 
aid of numerical computations,^) has provided considerable insight into the 
subject of ultrashort pulse propagation. 

Even this specialized form of the basic equations has yielded only steady state 
solutions. These include both the solitary wave solution of self-induced trans- 
parency^' ^ and infinite wave train solutions^ ','"' which contain the solitary 
wave as a limiting case.  Only the former will be discussed here; infinite wave train 
solutions will be discussed later in connection with a somewhat more specialized 
theoretical model. 

For a steady state solution, one may assume that C > ß , 2 ,  and A are functions 
of a single dimensionless variable w = {t-x/V)/r    where V is the velocity of the 
pulse and Tn is a parameter having the dimensions of time.  It will be shown that 
T may be directly related to the pulse width. 

Equations (2.35) and (2.37c) may now be combined and integrated to yield 

12 



•      ■   ■      :1' 

J9201+79-21 

(l-T-J^lwl + cil/     dAGjg(Aü;)j2(Au,w)/Acü=0 (2A0) 

An integration constant has been set equal to zero in this result since C and 2 
are zero before arrival of the pulse.  If this equation is divided by^(w)  and 
differentiated vith respect to w, one obtains 

j-oo    Aw dw \£ / (2.41) 

Now the function g(A(u) contains a parameter such as T* that determines the width 
of the inhoraogeneous broadening, e.g. 

g(Acü) = Arexp[-(Aa)T2
#/2)2] (2.1,2) 2y?r 

Although T and V, and hence Uü depend in an implicit way upon Tg, there is no explicit 
dependence of C  upon Tp. Also, since 2 is the response of an individual two-level 
system, it is also independent of T2 except for the implicit dependence contained in 
w. Consequently, the function in parentheses, the integral of Eq. (2.^1), does not 
contain explicit dependence upon T^.  Now if it is assumed that the theory must be 
valid for arbitrarily large values of To, then one may invoke Lerch's theorem^0'' 
to justify the conclusion that the term multiplying g(Auj) in the integrand must 
itself be equal to zero. It then follows that 

5(Aw,w) =x (Aw)£(w) (2.1,3) 

where X (^ID) is an as yet unknown function of the detuning. When this result is 
introduced into Eq. (2.^0), one finds that the velocity of the envelope function 
is given by 

7 s-Ml + € aj^ dAtug(Aw)x(Aw)/Aw 
{2M) 

To obtain the form of the envelope function C,   it is first noted that Eqs. (2.37b, 
c), with the phase term cp set equal to zero, are equivalent to the linear equation 

d ̂  +i£x= \2 (2.45) 

where \ = ß + i 2 •     Setting 
• W <!>(*) = £iTpf     dw'iV) 
^ (2.46) 
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and introducing Eq.   (2.^3),  one finds that the solution of Eq.   (2.^5) which reduces 
to/0(-») = 0,  A(-«)  = -1 is 

/^ = -(i-fx)sm0 (2.^7) 

A =-fx-(i-fx)cos^ (2 ^8) 

Substitution of Eq.   (2.43),   (2.47) and (2.48)  into Eq.   (2.39) yields 

..    .     ÜTpAcü 

Also, from Eq. (2.38), the energy conservation law, 

where 

^\2
=2y

2(|-COS^)=4y2Sin2(^/2) 
(2.50) 

X^rOUp)2/^-,) (2.5!) 

and 
•00 

r = I- 7s/d Äug (Au;) A OJ x(Aw) 
V —00 

(2.52) 

The solution of Eq. (2.50) that vanishes as w-*-±oo is 

^ -1 y* 
t^ = 4 tan e 

Hence the electric field envelope is 

(2.53) 

ti 0  rpdw rp (2(^^ 

and one sees from the definition of w that T will play the role of pulse half width 

provided y  is set equal to unity. 

If the maximum pulse height is equated to 2E , then Eq. (2.54) yields 

nTP = ' (2.55) 

which determiner, the pulse width in terms of its amplitude and ^J5 which characterizes 

the medium. 
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From Eqs. (2.^3), {2.kl),   {2.k8)  and (2.^9) one finds that the response of a 
given two-level system is^3) 

ft = -l+2Dsin2{^/2) 

ß = -Dsin^ 
2=  2 AcüTpDSin((^2) (2.56) 

where 
,-1 

D= [l+(Aa;Tp)2] (2.57a) 

Also, it is now possible to return to Eq. (2.Ml-) for the envelope velocity and 
consider its dependence upon Tp. Combining Eqs. {2.kh)  and (2.^9), one finds that 
V is given by 

000 

± = -L + a TD
2 / dAcüg(Acj)D 

V      c p ./-00 (2.57b) 

V0-v
=(l"r)(y0'c) (2>58) 

Here V is the velocity in the limit of no inhomogeneous broadening. For g(Au)) 
given by Eq. (2.42), one obtains 

where 

T = jdAcugUWo = 2kexp(K2)E'vfc(K) (2.59) 

V
/2T

P (2.60) 

and Erfc(k) is the compliment of the error function^1). For Tf » T,, F -*• 1 and 
V -*• VQ. As Tp becomes much less than Tp, a much smaller percentage of the atoms are 
on resonance. One then finds I -* 0 and hence V -»■ c. 

Finally, it has been noted'32) that if the carrier frequency is not confined to 

the center of a symmetric line but is in fact far-off resonance, the expression for 
the velocity given in Eq. {2.kk)  goes over to the usual result for the velocity of 
a wave in a dispersive medium. 

The above results, along with the infinite wave train solutions which correspond 
to libration and oscillation solutions of Eq. (2.50) are the only analytical solutions 
of the inhomogeneously broadened version of Eqs. (2.35 - 2.37) that have been reported 
to date. However, further analytical progress is still possible if one confines 
attention to the area under the envelope curve'i*^. Defining 

i.00 

0U)=n Idt'^x.t') (2.61) 
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the equation governing the variation in e is readily obtained by integrating Eq. (2.29a) 

over all time. Using Eqs. (2.28b) and (2.31b) with cp again set equal to zero one finds 

^f + K0=a,n!/'fAaJ ^IjTjt'^x.tXx.t
1) Lim sinAwit-t')      (2i62) 

where k = 2rr  o/c.     Since the indicated limiting process  is somewhat delicate,  a 
method of carrying it out is now given in some detail.    First,   one may introduce the 
well known forms 

Lim  sinAcut  .    *(Al s 

Lim cosAcüt   (  \   _ P 
t—oo AUJ '\Aa; ACü/ /2 ^o\ 

where P denotes a principal value. Using another standard representation for the 

delta function and the principal value, 

Lim cosAcut . um 
t^00      Au;      "   € 

m    [ J_ _     Am 
—0 L Aw    «2+(AcJ2. 

S(ACü) Lim   €-0 {2.6h) 

When these results are used in Eq.   (2.62),   one obtains 

• 00 

d 
-00 

^+K0=^J^2mx)t')/Ko,x,t,) 

where 

a = 2 7rg(o)a' 

(2.65) 

(2.66) 

and oi%   is as defined in Eq.   (2.30).    As will be shown later,   the population of on- 
resonance atoms,   i.e.,  those represented by A(0,x,t),  may be expressed as 

r    /** 
A(o,x,t)= ±cos   njdt'^x.t1) (2.67) 

where the upper sign is to be used if the population is initially inverted while 

the lower sign is used if the population is Initially in the lower level. Hence 

Eq. (2.65) finally takes the form 

^ + «8=±fsi"9 (2.68) 

Equation (2.68)  is the area theorem^''ö^.     It contains the key to an understanding 
of many   of the effects which occur in the propagation of ultrashort optical pulses. 
Again,if orientational averaging is  included,   the factor o  should be replaced by ot/j,. 
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For o = 0, the solution of Eq. (2.68) which satisfies 9 = 9 at x = x0 is 

tan f MQn-|iexp[±f (x-x0)] (2.69) 

and is depicted schematically in Fig. 1. Modifications of this result due to 

nonvan is hing conductivity have been inferred^  ' from numerical solutions of Eq. (2.68). 

Since Eq. (2.68) contains a choice of signs, it is actually two distinct differen- 

tial equations. The two solutions are obtained from Fig. 1 by reading the diagram 

from right to left for the plus sign (amplifier) and from left to right for the minur 

sign (attenuator). Hence one sees that an infinitesimal area will grow to TT in an 

amplifier while any area less than TT will evol\^ to zero in an attenuator. Thir. 

second result allows for not only the well-knowi. decay of a pulse as it propagates 

in an attenuator, but also for evolution into a nonvanishing zero TT pulse, i.e., 

one in which the total area under the pulse envelope is zero but the area under the 

pulse energy (~^) is not zero. This is of course possible if the positive portionr. 

of a pulse envelope are equal in area to the negative portions. Physically, the 

regions of positive and negative envelope are merely regions in which there is a 

relative difference of  l80  degrees in the phase of the carrier wave. In an 

attenuator, initial pulse areas between rr and 3TT will evolve into the steady state 

2TT pulse of self-induced transparency. One also sees that the 2n  pulse is unstable 
in an amplifier and will evolve into either a n or 3TT pulse. 

Figure 1 refers only to the total area of a pulse and gives no information at 

all about the possible breakup of a pulse into two or : are pulses with the same 

total area or of whether a continually amplifying pulse will retain an area of TT by 

virtue of pulse narrowing or by developing negative regions in the pulse envelope. 

2.4 Steady State Pulse in an Amplifier 

In addition to the self-inluced transparency solution in an attenuator, a some- 

what similar steady state result may be obtained in an amplifer if the loss term a 

is retained in Eq. (2.29a). This was first recognized by observation of machine 
computations(■'-3) and subsequently obtained analytically(9). Both results have been 

obtained in the limit of no inhomogeneous broadening although certain cases in which 

homogeneous broadening is retained have also been treated^'. From Eqs. (2.29), (2.31) 

and (2.32) the relevant equations are 

$*'¥;**"e-#P (2.70) 

tig+'&)'-#2 (2.71) 

as well as Eqs. (2.27)' The ad hoc assumption which renders the analysis tractable 

is that both «fT and cp travel at the velocity c. The differential operators in 

Eqs. (2.70) and (2.71) then vanish identically and the problem is greatly simplified. 
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It should be emphasized that there Is no rigorous Justification for this assumption. 
However, it has recently been notedU^) that if a steady state pulse at any velocity 
vyc is assumed, then the resulting numerical solution is unstable and evolves 
asymptotically into a pulse propagating at v a c. 

From 3q.   (2.71) one then sees that 2-0  and hence from Eq. (2.37b) that 

^+ötz0 (2.72) 

Cunscqucntly, 

and from Eq. (2.22) one sees that the frequency of the steady state pulse is always 
equal to tu the transition frequency of the two-level system(9). Since 2 = 0, 
Eq. (2.37a) follows from Eq. (2.32) without the use of the slowly varying envelope 
approximation. The remaining equations are now 

t&'P (2.7^) 

p-.SlCf* (2-T5) 

b--SlCP (2.76) 

where the dot signifies differentiation with respect to t -   x/c and 

C=C7-E0/A0üi0v. (2.77) 

Since Eq.   (2.75) and (2.76)  have the parametric representation 

P'-SM* (2.78a) 

A=cos^ (2.78b) 

with 

Eq.   (2.7U)  is equivalent to the differential equation 

L8 

(2.79) 
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<U* = Sin* (2.80) 

The solution is immediate and leads to 

C--f  sech[a(t-x/c)/C] (2.81) 

Alco, the population is seen to be inverted by the pulse since Eq. (2.78b) is now 
equivalent, to 

/y = -tanh[ft(t-x/t)/C] (2-82) 

Since 

/GO 

•00 (2.83) 

and also because the vector whose components are fi and J2 IS rotated through an 
angle n  during the passage of the pulse, the result given in Eq. (2.8l) is customarily 
referred to as a n pulse. 

Steady statp pulse propagation in an amplifier has also been analyzed without 
the assumption of a slowly varying envelope and phase^^). The assumption of propa- 
gation at the light velocity of the medium is retained, however, and provides the 
simplification that is sufficient to permit an exact solution. For pulses that arc 
many optical cycles in duration, there is very little difference between the pulse shape 
obtained with this more exact treatment and the msthod described above, as is to be 
expected. What is of great interest, however, is the prediction of phase variation 
in thn carrier wave. The "chirp" predicted by the theory is proportional to the 
square of the ratio of optical period to pulse width. Such a result could not be 
obtained in the slowly varying phase and envelope approximation since it is equivalent 
to an expansion to only first order in this ratio. 

The method has subsequently been extended^  ' to include the effect of dispersion 
in the host medium.  In the limit of large dispersion it was found that a monotonic 
frequency sweep is predicted. Such chirping of ultrashort pulses has been observed 
experimentally and offers new opportunities for pulse compression^-^ ' and population 
inversion^ ' . The chirp that developes in the presence of large dispersion is found 
to be proportional to the first power of the ratio of optical period to pulse width. 
This suggests that such a result can be obtained with the framework of the slowly 
varying phase and envelope approximation and in the following development, the 
problem will be approached from this point of view. 

When no dispersion is present and the pulse is assumed to propagate at the velocity 
of light in the host medium, Eq. (2.21) reduces to 
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where w = t - x/c. When E and P are written in the form of Eq. (2.22) and (2.27) 
respectively but without any assumption that «fT and cp are slowly varying, Eq. (2.80) 
yields the pair of relations 

ic p-<{?£+£ dw d w (2.85) 

fw^^o-aw)0 (2.86) 

Eqs. (2.3T)> with AID again set equal to zero, are also applicable. Combination 
of Eqs. (2.85) with (2.37c) and Eq. (2.86) with (2.37b) leads to 

tt--P (2.87a) 

Eqs. (2.37b) and (2.37c) may be combined to yield 

^(|>^ + -£(^) (2.88) 

in which Eq. (2.39) has been employed. From Eqs. (2.87), (2.37) and (2.39), one 
obtains 

^aV,,-AVhV]|£ = -04^ dw 0   |+a2yv2 (2.89) 

a=Xl/Cuj0 (2.90) 

Finally, Eq. (2.88) yields 

dw "o" i+(aA)2 [l+^'2]) (2.91) 

Unfortunately, one cannot solve Eq. (2.89) explicitly for the explicit time 
dependence of A . Solution of Eq. (2,89) merely leads to the inexplicit relation 
equation for A which has the solution 

acü0w = A-(a2+i) tanl-T'/V (2.92) 
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For a » 1 this reduces to Eq.   (2.82) as is to be expected. 

The    "instantaneous" frequency is 

"'inst= wo "-Jj- (2.93) 

For Al = ±1,   i.e.,  at both ends of the pulse 

Win.t'wo[i-a2/(l+a2)] 
(2.9^0 

while at the center of the pulse   A = 0 and 

winst=4)(|-,-a2) (2.95) 

The fractional shift in frequency is 2a /(l + a ). For a picosecond pulse at 
l)i, a ~ lO"-^ and the fractional frequency shift is ~10 . The absolute frequency shift 
is 300 mHz, 

The calculation outlined above was subsequently^  extended to include dispersion 
in the host medium. The dispersion was treated by standard methods of linear wave 
propagation.  It was found that in the limit of large dispersion, the chirp becomes 
proportional to the first power of the ratio of optical period to pulse duration 
rather than to the second power as was found in the previous calculation. As is to 
be expected, then, this limiting case can be treated in the slowly varying envelope 
and phase approximation and this formulation is developed below. 

The wave equation given in Eq. (2.1) is readily modified to include effects 
arising from the presence of a host medium. Since the effect of the host is merely 
to provide an additional contribution to the polarization, one need merely introduce 
an additional polarization term F  to describe this nonresonant contribution. The 
total polarization in Eq. (2.1) is then 

p=p*+pn* (2.96) 

where the first term, Pr, is the resonant polarization resulting from the interaction 
of the wave with the two-level system suspended in the host medium. The frequency 
dependence of the nonresonant polarization is conveniently described in terms of a 
susceptibility x (tu) by writing 
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^'C  If *""  X ME(W' (3.97) 
where E((i)) is the Fourier transform of the electric field vector 

E(cü) ^^dte  E(t) (2.98) 

In the neighborhood of the carrier frequency m, the susceptibility may be 
approximated by 

47rxM = a0+a2 (u}0/u)) 
(2.99) 

of P . Note that any absorption associated with an imaginary part of X is ignored 
where a and aj are real. Hence X is real and x(u)) = x(-(u) which assures the reality 
of P . Note that any absorption associatec 
The nonresonant polarization then satisfies 

l7r "dT = aodi" ^^ojT^dt'Elt') (2.100) 

For an electric field polarized in the Y direction and travelling in the positive X 
direction, it follows from the Maxwell equations that the associated magnetic field 
vector is 

*-^> ft (3.10.) 
where k is a unit vector in the Z direction. 

Energy conservation is expressed by 

V(EXH)+2c^-(E+H )+_E. -j-J' -- — ^o-E + 2 ^^ (2.102) 

where Eq. (2.21) has been employed.  If one assumes that a steady state pulse is 
maintained by a balance between ohmic losses and resonant gain, then the right-hand 
side of Fq. (2.102) will vanish. The left-hand ride may be simplified and one finally 
obtains 

n-f-^-va+^^W 
0 ""     "   C   «* ' (2.103) 

If it is assumed that E is of the form of a steady state pulse with envelope 
velocity ve and phase velocity v then one may write 

E =JE0^(t-x/Vp)cos w0(t-x/vp)+ ^(t-x/ve)J (2.10^) 
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From Eq.   (2.101) 

where 

'e    vp 
(2.105) 

and 

\\) =ÜJ0(t-X/Vp) 

When second harmonic terms are neglected, 

i   a 
ax ~' ~=   ve

2 at ~' ~ 

and Eq.   (2.103)  takes the form 

(2.106) 

(2.10?) 

(2.108) 

2C 1 ' + a^" •V&U 0 ve
2;at 

CüoC £•  /dt E=0 
(2.109) 

Since the two terms  in this equation have a completely different time dependence, 
one must require that they vanish separately.    This yields 

Turning now to the wave equation for the medium under consideration,   one has 

(2.110) 

a£ i+Qo^ q;^o2
r,

47r j f     . & 
ax2    c2 at2   c2  -   c2 at r-    at 

(2.111) 

With the velocities as determined above, the left-hand side of this equation reduces 
to a perfect time derivative and one finds 

dP* cüoAEo^sCos^-^csinv|/) =o-E + ^ (2.112) 
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where 
27rA=->/62(l+a0) 

(2.113) 

The resonant polarization is of the form 

V n0S'[-/?sin(i//+^+i2cos(v//+<^)] (2.114) 

where \|i is as defined in Eq. (2.107). Employing the slowly varying envelope approxima- 

tion, 

|!l=-cü0n0^ [/}sin(i//+(#+5co8(^))] (2.115) 

and Eq. (2.112) yields 

{t)^-p)i^+%rS-2)cQs4>--0 (2.116) 

Two expressions may now be formed for tan cp. When they are equated, one finds 

(C£-/9)2:-W-2)2 (2.117) 

where £ is as defined in Eq. (2.77) and 

y= Cü0A/O- (2.118) 

Since all terms are real, each side of Eq. (2.117) must be zero and hence one obtains 

P--t,Z 

(2.119) 

From Eqs. (2.II9) it is seen that y  represents the ratio of the in-phase component of 
polarization to the out of phase component. For a dispersionless system y = 0  and 
hence 2=0.    The effects of dispersion may therefore be considered to be large 

when Y ^ !• 

From Eq. (2.39) 

e   i-A 
C (1 + ^ (2.120 
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and from Eq.   (2.37a) 

-    W?r  n ) 
dt "    Cd+y2)" " ' (2.121) 

The population is again seen to be inverted by the pulse for the solution of Eq. (2.121) 
is 

A= -tanh(t/rp) (2.122) 

where 

Tp=C(i+y2)/n (2.123) 

The pulse shape, which follows from Eq. (2.120) is 

I 

'P 

From Eqs. (2.88), (2.119) and (2.120), 

i - -X. £3Ch t/Tp 
(2.121+) 

at     Tp/" (2.125) 

and the "instantaneous" frequency is 

"i„.t="°-|f=^, + ^) inst 0 dt ~*'    ^oTp '" (2.126) 

Hence, for y comparable to unity, the frequency sweep is proportional to the first 
power of the ratio of optical period to pulse width. 

For large y it may be easily seen that the population inversion takes place by 
means of adiabatic rapid passage^-5'. Introducing a position vector in a three 
dimensional P , 2 >   ^  space according to 

R = iP+ji'+kA (2.127) 

and a vector describing the electric field and the detuning of an individual two- 
level system by 

~  '^at (2.128) 
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Eqs. (2.37), with f set equal to zero, may be written 

dR  i-yn 
dt ^ " (2.129) 

For large y,  the angle between R and E is given by 

cos0= liiilr ^l1 (2-i3o) 

Hence the position vector remains collinear with E. As the pulse passes a given 
two-level system and M goes from y/j    to -y/j    the k component of R must proceed from 
I to -1. 

It is to be expected that future research in the field of ultrashort pulses will 
place increasing emphasis upon the phase characteristics of such pulses. 

2.5 Transformation of Equations for a Two-Level System 

It has been found useful to observe that Eq. (2.37) are a set of scalar equations 
which have exactly the same structure as the Frenet-Serret equations of differential 
geometry(3ö)_  j^ ^ ^nown that the solution to such a set of equations is equivalent 
to the solution of a Riccati equation^ K    To show this^ one first recalls from 
Eq. (2.39) that an integral of Eqs. (2.37) is 

A2+Pz+2z--\ (2.131) 
Two new functions may now be introduced by writing 

T^-J+iß   -   * (2.132a) 

A/+\P     \+2 . _ -L . ^ 
s-2    A + i/3        ^ (2.132b) 

Equations (2.132) may be inverted to yield 

•      l-c^vj/    2Re4> 

ß - ■ i*^ - 2im^> 
"'  4,-vf/  ' |^2+l (2.133b) 

^4^  _    k|2-l 

*"*        l^l'+l (2.133c) 

Equations governing the time dependence of cp and t  are readily deduced by inserting 
Eqs.   (2.133)  into Eqs.   (2.37)-     It is found that cp satisfies the Riccati equation 

and that  t satisfies the same equation. 
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One may now employ the usual transformation to convert this Riccati equation to 
a second-order linear equation.  If the phase term is neglected the problem is reduced 
to that of solving the equation 

w+^(f2+^2+2iöw=o (2.135) 

where the dot signifies differentiation with respect to T,.    The new dependent variable 
w is related to cp through the transformations w =u ex^-p f     dj' i?) and cp = {21/f) 
d(lnu)/dT. From well-known properties of such second-order differential equations, it 
follows that in general it is impossible to write co or ij; explicitly in terms of 
quadratures of £ . 

Equation (2.135) is particularly instructive since it puts power broadening in 
evidence and provides an immediate contact with results obtainable from the well- 
known vector model for describing the response of a two-level system to an external 
field'^''. We now digress briefly to consider this approach. For a constant 
envelope £=   £0,Eq. (2.135) is readily solved in terms of the functions 

w = exp (±l|Vf^V) (2-136) 

If the population is initially in the lower level and the pulse is turned on at 
T = 0, then the proper Initial condition for w is readily found to be w(o)/w(o) = 
i(f -<£0)/f

2 +^§F and one obtains 

A =-H-2C0S2 a sirf(fT/2) (2.137) 

where 

a = tanif/^o) 
(2.138) 

This constant field result agrees with that obtained from the geometric model.  It 
should be emphasized that although the vector model itself is applied for arbitrarily 
short pulses, Eq. (2.137) is only applicable if the pulse envelope varies slowly 
on the time scale n" . For the ultrashort optical pulses under consideration here 
this condition is violated. An example of a time dependent pulse profile for which 
Eq. (2.13^) is still soluble in closed form is the steady state solution for self- 
induced transparency, namely 

C = 2 sechr (2.139) 

The solution of Eq. (2.134) when «fT has the form given in Eq. (2. 39) and which takes 
on the velue -1 as T -* -» may be shown to be 
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f-i exp(lcr/2 .       .    , 
4>---£—; ,      ; : {2.lko) 

f-iexp-lcr/2 v 

where 

-I  T -i dr^ = 4tan e 
{2.lhl) 

Eqs. (2.133) then yield expressions for the response of the system which agree with 
Eqs. (2.56) 

2.6 Specialization to a Soluble Model 

Although it is possible to obtain a fairly complete analytical description of 
steady state pulse propagation in an inhomogeneously broadened medium, other very 
Interesting features of pulse propagation have not thus far been found to yield to any 
simple analytical treatment. It has been noticed, however, that if inhomogeneous 
broadening is neglected, the analysis may be pursued much further. Fortunately, it 
has been found that results predicted on the basis of such a model are preserved to 
a considerable extent when inhomogeneous broadening is included and the more complete 
set of equations is investigated by numerical computations1, '-'-'),    Furthermore, the 
model is not without physical interest in its own right since, as mentioned above, it 
may be used as an approximate description of optical pulse propagation under condi- 
tions of extreme saturation broadening. 

The simplification introduced by the assumption of vanishing bandwidth is im- 
mediately evident when one recognizes that Eq. (2.13*0 becomes linear for f = 0. 
The solution is then 

fr ± ela 

where a is given by Eq. (2.lUl) or equivalently, 

C --    da/dr 

(2. ik:. 

{2.lh3) 

The choice of sign in Eq. (2.1^2) is again related to the two relevant initial con- 
ditions A (I-, - ») = ±1.  From Eq. (2.133) there follows 

A/- + cos a 

P .-+ smcr 

2 = 0 
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and Eq.   (2.35)  takes the form 

dh = + ismtr 
d^T     -amw (2.1U5) 

This nonlinear partial differential equation is the fundamental equation of the 

model. Fortunately, it has already been studied extensively since it 

arose long ago in the theory of pseudospherical surfaces, i.e., surfaces of constant 

negative curvature(38)  More recently, it has arisen in the analysis of many 

physical problems^ ^' 

The general solution of Eq. (2.1^5) is unknown. However, a variety of particular 

solutions corresponding to specific pseudospherical surfaces, have been discovered. 

One rather large class of solutions is expressible in terms of the variables 

U = Q T + ^/d 

v = aT-^/a (2.1I+6) 

where a is an arbitrary constant. In terms of these independent variables, Eq. (2.1^5) 

takes the form 

aV  av . . 
TT " TT - smo- 

(2.1U7) 

The above-mentioned solutions are of the form 

(r{u,v)=4tanl[F(u)/G(vj (2.1^8) 

Substitution of this assumed form into Eq. (2.IV7) leads to the requirement that 

F(u) and G(v) satisfy the equations 

F'2---kF4+mV+n 

G/::= kG4+(nn2-i)G2-n (2.11*9) 

where k, m and n are arbitrary constants.  The various psuedospherical surfaces cor- 

responding to such solutions are known as the surfaces of Enneper and have been 

exhaustively catalogued by R. Steuerwald^ °^. 

Among such solutions are to be found analytical expressions that describe not 

only the steady state 2TT pulse associated with self-induced transparency but also 

solutions that correspond to a 1+TT pulse as well as pulse envelopes for which the total 

pulse area is zero, so-called zero n pulses. As noted previously, the negative part 

of the envelope in such a pulse is merely the way in which the present model accom- 

modates a phase change of rr that could take place in a more complete theory in which 

the phase term cp of Eq. (2.22) were retained^ '•'. The Vr solution exhibits the 

pulse breakup phenomenon that has been observed both experimentally^ ' and in more 

complete numerical computations^0'  '. 
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Another, and more general, method of obtaining solutions is to use the fact 
that Eg. (2.1^5) is an example of an equation which admits of a BaecklunJ transforma- 
tion'4"»^'. This transformation theory may be interpreted geometrically as the 
transformation of a surface which represents a solution of a given partial differen- 
tial equation into another surface which is the solution to the same or, in some 
cases, another known equation. 

For Eq. (2.1^5) the transformation equations are^ ' ^' 

' ''fcr-K^ti-S«/^ 

One may easily show that both a0 and a-, satisfy Eq. (2.1^5) • Hence, from a given 
solution o0 one may obtain a new solution o-^ which contains not only the constant a 
but also an arbitrary constant of integration. This transformation may be used 
repeatedly to generate a solution 02 from o-^  etc. For extensive calculations of this 
sort, it has been found convenient to use a symbolic representation of Eqs. (2.150) 
in which a transformation from a solution o^ to a solution o • with a constant a^ is 
represented as shown in Fig. 2. As a first usage of such multiple transformations, 
one may show quite readily that the four solutions that are related by the trans- 
formation depicted in Fig. 3 will satisfy 

'on M = "^ -on (^3) (2.151) 
which, quite remarkably, does not involve any quadratures. A simple algebraic 
manipulation of the eight equations implied by Fig. 3 leads immediately to Eq. (2.151). 
It will be shown subsequently that this result may be used to construct a hrt  pulse as 
well as a number of different types of zero n pulses. 

If a^ = a2 and the integration constants in a-, and 02 are different, this 
relation merely yields 

03«cr0±7r (2>L52) 

When the integration constants are the sar.io, the resulting indeterminate form may be 
evaluated from the usual Taylor expansion and one finds 

\ 4 / 2 \da, dy, da, / (2.153) 

where YI is the constant of integration arising from tne solution of Eqs. (2.150). 
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It will be shown that the compounding of transformations shown in Fig. k  yieldu 
a 6TT pulse. An obvious generalization to obtain a 2m pulse and undoubtedly more 
complicated zero n pulse suggests itself immediately but the subject has not been 
pursued beyond this point. 

All of th»» above solutions represent modes of propagation that are realizable 
In an attenuator. It has been found that a solution which applies to a lossless 
amplifier, the n pulse, is contained within the family of solutions that results 'rom 
the specification that a  be of the form O(5T). Such solutions have also been con- 
sidered within the context of differential geometry^ ' and have been used recently 
in the attenuator case to describe coherent resonance fluorescence'^ '. 

2.6.1   Specific Pulse Profiles 

We now turn to a more detailed consideration of the various solutions of 
Eq. (?,lk5)  that were mentioned above. The results are, of course, meagre in co.n- 
parison with the complete analytical description of the evolution of arbitrary initial 
pulse chapes that can be obtained when dealing with linear initial value problems. 
However, the particular solutions that have been found do exhibit many of the impcrt- 
ant and interesting features of optical pulse propagation as It  has been observed 
both experimentally and as output from numerical computations. 

2.6.1.1 2TT Pulse 

As has been indicated above, a large number of pulse profiles may be obtained 
for propagation in an attenuator.    Perhaps the most widely known solution of this 
type ir. the one related to self-induced transparency.    It may be obtained in a number 
of ways, the simplest being that of assuming a steady state solution of the form 
o(t - x/v).    Such steady state solutions will be discussed subsequently.    The solution 
may also be obtained by noting that a ■ 0 is a solution of Eq.  {2.lk^).    nils solution 
may then be used as o0 in the Paecklund transfomntion given by E]8.  (2.1^0).    Choosing 
the lower sign in the re^ond Eqs.  (2.15o), as is required for propagation in an atten- 
uator, the two resulting firot-order differential equations have the solution 

<r, «4 fon",e*' 
(2.15M 

where u is as defined in Eq. (2.11*6). One constant of integration has been set equal 
to zero since it merely serves to translate the initial location of the solution along 
the v axis. The corresponding electric field follows from Eq. (2.ll*3) and one finds 

where 

C a2o sech »■ 2o sech [onO-x/v)] 

WHO 
(2.155) 

(2.156) 
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From Eq. (2.155) one sees that (aQ)  determines the width of the pulse envelope. 
Therefore, setting afi = Tp  where T is the pulse width, the expression for the 
electric field envelope becomes 

Q~C* |-sech (t-x/v)Tp (2.157) 

whs re 

-i- = -L+a'rp2 = ^-(i+UM/Uw) (2.158) 

a'   is as defined in Eq.   (2.30) and U.T and U    are the energy densities of wave and 
medium respectively.    The last form for the velocity given in Eq.   (2.158)  is 
particularly instructive and has been derived'52) ori simple physical ground by 
merely equating the average energy of both wave field and medium,  VTp(Uw + Um),  to 
CTJDL the amount of energy that flows through the volume VT_ at the light velocity c. 
Eqs.   (2.157) and (2.158) agree with Eqs.   (2.5^) and (2.^4)  in the appropriate limit, 
namely g(Au>) -♦6(Au))' 

2.6.1.2    kn Pulse 

It has been observed both experimentally   and from machine computations ' 
that the combination of field strength and magnitude of dipole moment sufficient to 
induce two inversions in the population of the two-level system, a so-called W 
pulse, does not propagate as a single pulse but rather separates into two separate 
'TT pulses. Such pulse separations are also exhibited by the analytical solutions 

'» -^. The hn  pulse is obtainable as the function o^ in Eq. (2.15?.) when one 
chooses OQ  = 0. If one chooses the lower sign in Eq. (2.114-5), as is appropriate for 
the attenuator, then 

f 

-1 
o-, = 4 fan 

whore 

[expd/,)] ,i= 1,2 

1/ = a T-i/Q 

1  1   1 

(2.159a) 

(2.159b) 

The result in? expression for a? may be put in the form 

0, + 02\ sinhj^-i/z) 

cosh-ir^+i/j) 
0-3 s 4 ton 

\0\- Qz) 
(2.160) 

For a, > 0, a« < 0 the function o, in Eq. (2.l6o) varies from -2TT to 2n as T proceeds 
from -• to •. Since 
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B = %- Pdt^ = a(oc)- (-«) 
n •'-00 

(2.161) 

one may expect that the assocated electric field will correspond to a kn  pulse. 

Setting a-jQ = T^ , -^O - Tp using Eq. (2.143), the electric field is found 
to be 

EpF^ .      (Z/T^sech x-t-(2/T2)sechY 
Ti   ^  ~      i-B(tanhx tanhY-sechxsechY) 

where A = (T2
2
 - T^)/(r,,2 + r*) 

B = 2r{rz/{T2
2 +T,2) 

x = (t-x/vJ/T, 

Y = (t -X/V2)/T2 

(2.162) 

(2.163) 

and the velocities V and V are 

-i-(i + flV,r)= -^ + a'T-,2 

i^d + n-^O^.a'V (2.l610 

A graph of Eq. (2.162) is shown in Fig. 5. As the pulses become completely separated 
Eq. (2.162) reduces to 

^C -- ^rsech(x±/3)+ iLSech(Y±/3) 
(2.165) 

where the upper sign is to be used for T, < T and the lower sign for T > T0 and where 

ß = tanh-'B (2.166) 

In order to obtain a pulse envelope that begins at | = 0 with only one peak as 
a function to time, one must impose the requirement Q Cj'bT    < 0 at ^ = T = 0. This 
condition, along with the requirement £ > Qi  leads to 

(l_1,)(l +*2-3>l)> 0 , ^ = T,/^ (2.167) 

which Is equivalent to 

^(3-y5)<Tl/r2 < -4(3+75") 

(2.l68a) 
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Figure 5 could, of course, be continued back to negative values of %  to provide 
an example of the envelope distortion that takes place when an ultrashort pulse over- 
takes a slower pulse and passes through it. 

In addition to the above results for specific pulse profiles, certain conclusions 
relating to ^TT pulses of arbitrary initial shape may also be given. These results 
are obtained by employing a technique previously applied to the Korteweg de Vries 
equation^) which has solutions with many of the same pulse like properties as 
Eq. (2.145) •  It will be discussed further in Section 2.6.3- 

One begins by noting that Eq. (2.1^5) possesses the two conservation laws 

V2 

A AT,, Arr^Zl (2.l63b) 

which follows from Eq. (2.1^5) after multiplication by äa/9| and Sj/dr respectively. 
Integrating over all 5 and over T from T = 0 up to an arbitrary final time one 
finds 

^d^d-coso-) = 4C 
* sv   wa  '   "^ (2.168c) 

where c-^ and Cg are positive constants that are obtained by evaluating Eq. (2.l68c) 
for a given initial form of a.    After the pulses have completely separated one may 
write 

o- = I    4tan-|(exp [aj{T--TJ)-^/Qj]} 
1=1,2 (2.i68d) 

Eqs.   (2.l68c)  then yields the paid of algebraic relations 

ar'+Qg1  = C| 

12    =  C2 (2.l68e) a, + a,   = C; 

Introducing the positive quantities a-,   = a,, o^ = -ao>   one finds that the final 
amplitudes are given by 

01.2=   7(02 ±yC2
2-4C2/Cl    ) 

(2.l68f) 

Also, one notes that, since the CVJ are real 

3h 



J920^79-21 

(78) 

C, C2>4 (2.l68g) 

It has been shown    that Kortoweg de Vries equation satisfies an infinite 

number of conservation laws. For that equation, the above technique may be extended 

to treat pulses which evolve into any number of isolated pulses.  Thus far, no 

additional conservation laws have been found for Eq. (2.1^5) although, as will be 

shown below, it is known to have solutions that break up into more than two pulses. 

2.6,1.3 Zero rr Pulses 

As mentioned previously, Eq. (2.1)4-5) also admits of solutions for which the 

associated electric field envelope becomes negative. Such solutions cannot be dis- 

carded on any physical basis since a negative field envelope merely corresponds to 

a phase change of rr in the carrier wave. 

Three different types of zero rr pulses have been constructed from the solutions 

mentioned above.  The simplest type is obtained by merely choosing a > 0 in the 

previous solution for the krt  pulse. The electric field envelope in dimensionless 

form is 

2A 
ai sech i/\ - azsech vz 

i - B(tanh v, tanh i/2 + sech i/, sech vz) (2.169) 

where 

A = (a,2-az
2)/(al

2 + a2
2) 

(2.170) 

B =j^ata2/(ai2 + ag2) 
(2.171) 

An example of this result is shown in Fig. 6. 

In the limit a = Ep, Eq. (2.151) becomes indeterminate. In this case, with 

y, again set equal to zero, on3 may use Eq. (2.153) and obtain as the second form for 

a zero rr pulse. 

a -  4tan"l(** sech v) (2.172) 

This yields the field envelope 
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^ = 4a sech ui  ! - pem ] 
(2.173) 

A graph of this result is shown in Fig. J. 

The third, and by far the most interesting type of zero TT pulse is obtained 
by allowing the parameters a1 and ag in Eq. (2.151) to become complex and requiring 

Oi = a2* = a = o + i/? (2.17^) 

One then finds 

a =  4tan' fa. sinq   \ 
\ß   cosh p J (2.175) 

where 

p = a(T-^/ial2) 
(2.176) 

and 

q = /3(r + ^/la|2) 
(2.177) 

The electric field envelope is 

4 a sech p cos q - ja/ß) sin q tan h p 
i + (a//S)zsinzq sechz p (2.178) 

A graph of this result is shown in Fig.  8. 

Unlike the two previous types of zero rr pulses,   the envelope given in Eq. 
(2.I7U)  tends to remain as a single localized disturbance.     It    provides an alternate 
and more flexible form of self-induced transparency.     It has been found'53)  from 
numerical  computations that this pulse shape  is remarkably insensitive to variations 
in inhomogeneous broadening. 

2.6.1.4    on Pulse 

As mentioned above, the 6rr pulse is obtained from the sequence of transforma- 
tions depicted in Fig. k. From this diagram, the corresponding analytical expressions 
are  easily seen to be 
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where 

<? 4Tan-'(Kl5tan^a) 

-I  V2 
cr2 = 4tane 

cTj = 4 tan 
'12 

(2.179) 

sinhi (i/, - i/2) 
K,-, -n  

cosh-^ (l/^ i/2) 

and 

er   : 4tan 
sinh 2 ^2' 'V 

23 cos h ^ ^2 + ^ (2.180) 

Kjj = lOj+ap/tai-aj) 

(2.181) 

One may immediately impose a number of constraints upon the triad of constants 
a-p a.2}  av  In 'the first place, for the envelope function corresponding to ap to be 
positive, one must require ap > 0.  One then proceeds to make oa a Urr pulse which 
requires a-, < 0. Also, a, is made a zero rr pulse which requires 0 < a-, < a?. The 
three constants a. may be related to the widths of the three pulses when complete 
separation has taken place by setting ■a-^ Tx> a2^ " T 2' 

a Q = T . 
3   3 

As with the kn  pulse, one must impose additional restrictions in order to 
assume a pulse shape that consists of a single peak at 5 = 0. The inequality is much 
more complicated in this case than in Eqs. (2.167) and has not been analyzed in 
detail. By a trial-and-error method the case shown in Fig. 9 has been obtained. 

2.D.I.5 TT Pulse 

To describe a TT pulse, one must turn to the other completely different class 
of solutions of Eq. (2.1^5) that were mentioned above. These are solutions in which 
the independent variables occur solely in the product form %r• When one sets Z = |T 
in Eq. (2.1^5) it reduces to the ordinary differential equation^-5 ' 

Zcr" + <T - sino-- 0 (2.182) 

where the prime indicates differentiation with respect to Z. 

A new dependent variable, w, related to a by w = exp(to), may be shown to 
(70) satisfy a special case of the equation that defines the third Painleve transcendent 

Since the  properties of such functions are essentially unknown and tables appear to be 
unavailable,   it seems preferable to resort to a direct numerical   integration of 
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Eq. (2.182). The result of such a numerical solution is shown in Fig. 10 which also 

includes the result for a' = { t /%)  ^ well as a phase plane diagram of the solution. 

The exa.uple shown in Fig. 10 satisfies the condition a(0) = 0.1 as well as <j(0) = 

sini7(0) which is required for continuity at the origin. 

Scaling laws for TT pulse propagation may be inferred from these results. 

Since the abscissa for the pulse envelope is §T, the actual pulse envelope narrows 

linearly with increasing distance of propagation. Also, since ^ = ^CT', the amplitude 

of the envelope increases linearly with distance. This spatial evolution of the pulse 

shape is shown explicitely in Fig. 11.  Similar results have been obtained from 

direct numerical analysis^' '     'of  the partial differential equations governing optical 

pulse propagation in a resonant medium. A comparison of Fig. 11 with results present- 

ed in Ref. l6 shows that until the signal becomes so large that the linear loss is 

dominant, neglect of the loss term introduces no significant change in propagation in 

an amplifier. 

The fact that the self-consistent interaction of field and resonant matter 

should give rise to ringing is not unexpected in view of the known^  ' response of 

an inverted population to a specified spatial mode of the electric field. The ring- 

ing may also be inferred from a theorem concerning solutions of Eq. (2.1^5).  It may 

be shown'''"'that there is no function which satisfies Eq. (2.145) and at the same time 

remains within the interval 0 < 0 < rr 

2.6,2 Steady State Solutions 

An example of a steady state solution has already been given with the discus- 

sion of the 2TT pulse. This solution is actually a limiting form of a more general 

oscillatory solution which is now considered.  Similar results for propagation in an 

inhoinogeneously broadened medium have also been reported^ '' '       . 

Steady state solutions will be functions of one of the variables defined in 

Eq. (2.1^5).  Choosing the variable to be v, one readily shows that the conservation 

laws given by Eqs. (2.38) and (2.39) take the form 

'^+A=Ai (2.183a) 
2a 

P +/V =1 (2.183b) 

where A -, is a constant of integration and the constant a is again (QT )" • Allowing 

for a steady state solution in which ^is non-sero wnen the entire population is in 

the ground state, one sees from Eq. (2.l83b) that the constant A may be less than 

-1. 

From Eq. (2.37a) and (2.183) one readily obtains 
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dAfV 
1 (2.1310 

ziyV-ZUd-ZV2) 

which shows that A may be expressed in terms of elliptic function. 

If -1<A1<1, a solution for which the population varies between/V, and 1 is 
given by 

(55) which leads to 

/'   d/V     r ^ rvo (2.185) 

A = i-2k2sn2[(v-v0),^ 
(2.186) 

where k2 = ^(l -A )• From Eq. (2.183a), 

^=2akcn[(v-v0),k] ^•l8^ 

A solution for which -l<A<Ai could also be given, but it requires that a 
be imaginary. This implies envelope function propagation faster than the light 
velocity. In the limit k -► 1 this solution goes over to one which represents 2rr 
pulse propagation in an amplifier which is unstable. 

For Aj_ < -1 it is seen that k > 1. Using the relations 

sn(v,k) = k'lsn(kv,k~l) 

cn(v,k)=dn(kv,k"1) (2.188) 

one finds that the population difference and field envelope may be written 

A = l-2sn[Wv0),k] (2.189a) 

<(r=2ak"
ldn[k~l(v-v0),k] (2.189b) 

p 
where now k = 2/(1 -z^-,). These latter forms may, of course, be obtained by direct 
integration of Eq. (2.l84).  In the limit A^ -*■  -1 both solutions reduce to that for 
the 2TT pulse in an attenuator. 

(57) 
It has been conjectured    that these steady state solutions may be realized 

in self-pulsing situations. 
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2.6.3    Relation to the Korteweg-deVries Equation 

It has been noted that the hyperbolic secant solution of Eq.   (2.1^5) and 
the decomposition of pulses into a sequence of such "solitary waves"  is very similar 
to results obtained in recent investigations of the Korteweg-deVries equations^      ■''. 
In fact,  one may show that,  for steady state solutions,  the square of the envelope 
function £ satisfies the corresponding steady state Korteweg-deVries equation.    This 
may be seen quite readily by writing CT(§,T)   in the form a(v) where v = T - §•    A 
first integral of the resulting equation is readily obtained.    The integral satisfying 
£ (-«) = ^(-oo) = 0 is 

COS (T = I  - "g^ 
(2.190) 

When this result is solved for a  and differentiated, one obtains 

4u; u 4u (2<I91) 

where u      C    •    Two derivatives of this equation yields 

dv dv     dv 

The substitutions 

v=2k   x (2.193) 

transforms Eq.   (2.192) to 

-kf+ff+f" =o (2.191+) 

where the prime indicates differentiation with respect to x.  Eq. (2.19^) is the 
steady state form of the Korteweg-deVries equation. The solution that vanishes for 
large values of x may be written in the fornr  ^ 

f =3ksech2(-^kl/:>) (2.195) 

which is readily shown to be equivalent to the result given in Eq. (2.157)' Periodic 
solutions in terms of elliptic functions have also been given .    They are related 
to the result given in Eq. (2.187) and are referred to as cnoidal waves. 
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(77) Although the multisoliton and oscillatory   solutions of the Korteweg-deVrles 
equation are similar to results obtained above for 2nrr and n pulses respectively, and 
the criterion given in Eq. (2.167 is similar to one^appearing in the breakup of two 
soliton solutions of the Korteweg-deVries equation^  , to the authors knowledge no 
quantitative relation between Eq. (2.11+5) and the time dependent Korteweg-deVries 
equation has been discovered. 

2.6.4 Stability Considerations 

When inhomogeneous broadening is present, the stability of the area under the 
electric field envelope ^(x,t) may be inferred^ '  from the solution of Eq. (2.68). 
However, an integration over the frequency of the detuning associated with inhomo- 
geneous broadening is a crucial step in the derivation of this result.  In the model 
being considered here, inhomogeneous broadening is neglected and so one must rely 
upon other considerations to infer area stability. This is accomplished quite 
readily by noting that Eq. (2.11+5) may be written 

d7-"s,ncr (2.196) 

where 

crU.tHaU,--^ )+/ dt'^X.t') 
(2.197) 

For a system initially in the lower level, one may take o(x,-<») = -TT for then 
A (x,-oo) = cosff(x,-"0) =-1, For a system initially in the upper level one may assume 
n(x,-») = 0. 

For the hyperbolic secant pulse envelope given in Eq. (2.155) A = i'f /h)      dt£ 
= 2TT so that near the trailing edge of this pulse, Eq. (2.196) goes to 

dC if = ^-^[(o^)^] (2il98) 

where the upper choice is made for the attenuator and the lower choice for the ampli- 
fier. Now if there is a perturbation in ^ such that the total area 9 is greater than 
2TT, then in an attenuator 9 (^/r)X ~ sin(TT + e) < 0. The field at the trailing edge 
therefore tends to decrease to recover a total area of 2n. On the other hand, if the 
perturbation is such that 9 is less than 2TT, then 9 tf/h* > 0 and the field at the 
trailing edge increases.  The total area of such a pulse therefore tends to remain 
at 2rr.  In the amplifier, the inequalities are reversed and the hyperbolic secant no 
longer represents a stable pulse envelope.  These results are in agreement with those 
previously obtained^ '' ' for the case in which inhomogeneous broadening is included. 
The above considerations predict only the area stability and leave open the question 
of perturbations in which the total area remains unchanged. We now take up this topic 
and show, by exhibiting a Liapunov functional with vanishing derivative, that in the at- 
tenuator the pulse shape is stable but not asymptotically stable, i.e., perturbations 
remain finite. 

i+1 
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An appropriate Liapunov functional F(u)  is given by 

^/>[(wH^+2,|-coH 
(2.199) 

which is proportional to the total energy residing in field and medium. Differentiation 
with respect to u and a subsequent partial integration yields 

dF - r^Hu i£.fÜ-iS. + sino-^ + ^Z. iS. 
dV "J-oodväTläUr   I^ + s,n(T;+au   dv 

V =03 

(2.200) 

which vanishes by virtue of Eq. (2.i1+7)(in which the lower sign has been chosen as is 
appropriate for an attenuator) and the boundary condition that o represent a pulse and 
hence 5a/^u and 3o/dv must vanish at v = +». 

Since dF/du is merely zero rather than negative definite, it is not unexpected 
a first-order perturbation analysis of Eq. (2.lij-7) will contain a zero eigei 

This is readily seen to be the case. Setting a = a      (v) + cT ^(u,v), one finds 
Jl) 

that a first-order perturbation analysis of Eq. (2.1^7) will contain a zero eigenvalue. 

(j = a(0)(v) + a
(r)(u,v), 

that cAJ"'' satisfies 

aV" _  d^}_,. ....^.^.o, 
^^--^r-"-2^2"""^0 

(2.201) 

Expressing a        in the form 

(^»(u.v) = v(v)esu 
(2.202) 

V(v) is found to satisfy the Schroedinger equation 

V"+ (X-2sech2v)V=0 
(2.203) 

where X = -(S +l). For X = -1 ( and hence S = 0) one readily finds    V(v) = sechv 
which is the solution corresponding to the expected zero eigenvalue. 

2.7 Inhomogeneous Broadening and Photon Echo 

A very extensive analysis of the effects on pulse shapes of both homogeneous and 
inhomogeneous broadening has been carried out numerically^  '  '. Thus far only the 
steady state pulse shape has been described analytically when inhomogeneous broadening 
is present. However, if one foregoes consideration of the actual pulse shapes and 
confines attention to the area under the envelope of the pulse, then further progress 
may be made.  In particular, it has been showm  ' that a very simple description may 
be given of the space-time evolution of the photon echoes that may appear behind two 

k2 
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optical puloes as they propagate through a reoonant inhoroogeneously broadeneo medium. 
This was carried oat by noting that the area theorem, Eq. (2.68) is still satisfied 
if the pulron are assumed to be infinitely narrow, i.e., of the form 

m.r) = *(08(r) (2.2^) 

where hir)  is a delta function. The assumption of propagation at the light velocity 
is consistent with that of zero pulse width according to Eq. (2.57a) 

The apparent inconsistency of using a delta function in the slowly varying 
envelope M%T) does no violence to the theory. It merely provides a convenient 
device for obtaining solutions to Eqs. (2.35) to (2.37) in the short pulse limit. 
We now give a derivation of the area theorem for delta function pulses and show 
how some of its implications may be readily explored. 

The response of the system is governed by the Riccatl equation given in Eq. 
(CM31»). Introducing the new complex function u ■ u * tu, by the definition 
9 - exp((u) Eqs. {2.1$*)  and (2.133) become 

^ ■ lf »in^ I * (2.205) 

P « WCh /i, sin m (2.206) 

2  8 -tonhM. 
(2.207) 

fi s sechM, cot/A» 
(2.206) 

Using the farm for / given in Eq. (2.201») and integrating Eq. (2.205) across the 
singularity at T ■ 0, «me I ^nds 

M>.M< . 0(C) 
(2.209) 

Since ^  is real, u,  is continuous across the pulse and according to Eq. (2.207),^ 
Ir also continuous across the pulse.   The change in population is 

a/HsM-fK ■ »echM.McosMj -cos/ij) 

which may be written as 

(2.210) 

A>
s ^cosö-^sinö (2.211) 
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Similarly, Bq.  (2.206) yields 

^> = P<cosÖ^<sinö (2.212) 

Eqn.  (2.211),  (2.212) and the continuity of ^across the pulse may be summarized In 
the vector form 

^\     /cosö      0        s'\r\8\/P<s 

£)•{ 0     '     0  F 
The 3x3 aatrlx represents a rotation about the ^axlo by an angle 9 and may be 
represented symbolically by Rj(0).    Considering iß£,fl) as the three components of 
a vector P, Eq.  (2.213) may be written 

P*  « R1(Ö)P< (2.211.) 

While the pulse Is not acting, the system evolves according to the hooogeneouc 
counterpart for Eq. (2.205) which has the solution 

•'M s icot -^(fr-i-a) 
(2.215) 

where a • a   •» tor. lr a constant of Integration. It Is now a simple natter to show .. r 1 that 

(pU) » secha.sintfr ♦ a%) - p(T0)c08f (T-T0) + <2(T0)sinf (r-r0) (2.2l6a) 

2^)- 8«cha1cos(fT ♦ a#) =5fro)co8f (T-TO) p (ro)sinf (r - to) 

I7(T) « fonh a, * t7(T0) 

(2.2l6b) 

(2.216c) 

The matrix representation of this result is 

WTJ\ /cOtf(T-T0)8inf(f-T0)0\    fPW 

2kT\\   --    (-8inf(r-To)cosf(T-To)o|  (^(To) 

<n*y \        0 Oi/   Wib)/ (2.217) 

which represents a rotation through an angle f(T - T ) about the n axis and nay be 
written 

P.n.RMr-r.lPU., (22i8) 
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If a Iransverse  relaxation time were retained In the analysis, so that between 
pulses ^and .2 satisfied 

ar + TTiT (2.219a) 

r ^       " (2.219b) 

then Eqs. (2.218) would be replaced by 

P(T) « e-(T-r0)/flT2 Rn(T-To)p(T0) 
(2.220) 

At a time T after interaction with a pulse of area 6, the state of a system that 
was initially in the lower level is given by 

Ptr) * R,(T)R. (Ö)P(O) =( sipö sinfT. 

\ -C0SÖ   / (2-22] 

Eq. (2.35), with g(A») ■ g(0) to accomnodate all spectral components of the delta 
function, takes the form 

||-8(T) ■ -TrglO)8(T)8in0 (2.222) 

which yields the area theorem in the form 

d| fe» ' -smö.C'^gJO)« (2.223) 

This scheme may now be used repeatedly to describe the response of the medium 
and 60 a time T to a sequence of pulses. The response due to two pulses of area «. «un* a2 

apart (in units of Q"1) la found to have a contribution at T ■ 2T. Evaluating P 
Just beyond this time T ■ 2T, one finde 

PIT) « Rntr-2T)R. (e,)R,(T)R l^R^TjR, (Ö.JPIO) 

Carrying out the indicated multiplications for a system that is initially in the 
ground state, one obtainr, 

P(C,'') ■ -sinö, cosfr -8inÖf cosÖ.cosf IT-T) 

- f sinÖjCOsG, cosö, - cosö, sin'(ö,/2)8inÖllco8f (T-2T) . 

^ 
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If a relaxation time Tg were included,  this entire expression vould merely be 
multiplied by e -2^l'^2. 

Subntituting this result into Eq.   (2.35)  yields 

W  '- "Sin01 (2.226) 

-rä-  = -sinojCOSO, äc (2.227) 

41* = -sinö.cose-cosö, + cosö, sin2(ö2/2)sinöl dC      5   2.52.      (2!228) 

Eqc. (2.226) and (2.227) have solutions 

ton-I" = exp{-C' + a) 
(2.229) 

2 

where 

tan-^- =/3sech(e'-a) ^sinö, (2.230) 

ea = tanÄ .£ = tanö^0)cscö|l0) 

(2.231) 

Now, If 91.(0) ■ n/2, 02^°) •** n» the 0PtlD,um ca8e for photon echo experiments, 
then |B| »1 and from the solution for Qj one sees that' ^2 re,nains nearly equal to 
its initial value until 9, decays to a value equal to B . Until this final state 
In the pulse evolution Is reached, one may set 02 ■ " in ^J« (2.228), The resulting 
equation may then be transformed to 

^cos08 + cotMinö5 = o ^^ 

Upon substituting y • tan(9^/2) this becomes a Rlccati equation which may be converted 
to a r.econd-order linear equation by the substitution y ■ -2(du/dA)/u.    Setting 
k « nln(9j/2) one finally obtains 

Mk'-Ou" + (Sk'-Ou* + ku = 0 
(2.233) 

where the prime indicates differentiation with rccpect to k. Eq. (2.233) has the 
solution^66' 

u r aK(k) + bKik') (2.23U) 

u 
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where K(k)  is the complete elliptic integral of modulus k and k'   is the complementary 
n for 8_ may be written 

03 . (k'/^Bik') -(k/k')B{k) 

modulus. Finally, the solution for $    may be written 

tan 2 KW^k') (2(235) 

vhere B(k) in a tabulated function    related to the complete elliptic integral by 

B(k) " k  dk (2.236) 

Figure 12 contains a graph of Eq. (2.235) as well as the variations in 9-, and 
9o« It is seen that the amplitude of the echo increases at a rate approximately 
equal to that at which the first pulse decreases. This has been observed experi- 
mentally^15'. 

2.8 Level Degeneracy 

(8,18) 
It has been pointed out    that pulse propagation under conditions which 

prevail experimentally may lead to considerably different results from those predict- 
ed here since level degeneracy may be present. It has also been shown that level 
degeneracy has a marked effect on the direction of polarization of the electric field 
vector of the echo pulse in a photon echo experiment^ ^'. Thus far, however, only 
the source term for the echo pulse has been calculated when degeneracy is present. 
No consideration has as yet been given to the complete problem in which the spatial 
evolution of the photon echo is followed in the presence of level degeneracy. Hence 
this latter topic will not be pursued here. 

To avoid detailed consideration of specif ic molecular modes, level degeneracy 
will merely be expressed in terms of a simple Jtn scheme. The two states previously 
denoted by a ami b are now characterized by angular momentum quantum numbers J'm' 
and Jm respectively. Additional quantum numbers that would be associated with molecular 
vibration will commute with angular momentum operators and may be ignored. Each 
elenie.it in the 2 x 2 matrices of Eq.(2.10) now becomes a (2J + l) x ^J' + l) subtnatrix 
itself with elements ^•tn' \f ljm>. As is well known^ ' transitions in J arc 
restricted to ^J ■ J' - J tt-I>0*I» the three alternatives frequently being referred to 
as P, Q and R branch transitions respectively. In addition, if the quantization axis 
is alligned parallel to the electric field polarization vector then omy the f 
matrix elements need be calculated. All such matrix element.? vanish unless m' = m 
One then finds that ^ « * <J,m Ijf I J"^ = ^m4? where ^f is the largest value of j^ . 
in each of the three cases and 

Km = yi2-m^j      . Aj = -i (2>237a) 

K-Sm/i    'AJS0 (2.237b) 

U7 
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Km = y(j+i)2 -m2/(j-M),Aj=i (2.237c) 

Since the submatrices of ^ = -E * IP = -E (p,, are now diagonal In m, the various pairs 
of leveln designated by different m values are not coupled by the Interaction and may 
be treated separately. 

Hence, for each value of m one may write 

pm + cüob
2 pm =—r^ ^mE l< jm/pz/j'm>|2 (2.238) 

•n -    2E    ft 
' '   Titüob  Pm (2.239) 

Asnuming that all sublevels of the lower state are equally populated initially, 

^m = Jrr(<jml^jm> -<jm|^ljm>) 
J (2.2U0) 

The electric field is governed by 

m- )< (2.21+1) 

where J< refers to the lesser of j and J'.    When this relation is integrated over the 
duration of the jalse,  one obtainr,,   in analogy with the derivation of Eq.   (2.68) 

W '-  l>l2lTöZkmsin(kmö) (2>2l+2) 

where 

0U)=   -^/JVnx.t') 
(2.2U3) 

For transparency to take place it is necessary that the rlght-hani side of Eq. 
(2.2U3) vanish. For Q branch transitions this -will be possible for 9 = 2nrr Just as 
in the nondegenerate c se since the various K ;ire integrally related. For P and R 
branch transitions, however, the irrational ratios of the various K prevent a 
simultaneous vanishing of all K except in the few cases in which there is only one 
nonvanlshing value of K^. For P and Q branch transitions this takes place for 
J - 0, ,',. 
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(  1 Pi} 
However, Lt has been noted    that the right-hand side of Eq. (2.2^3) will 

also vanish if /  dt'£ : 0  • Such zero n pulses should exhibit transparency indepen- 

dently of the values of the K^. Although profiles of zero rr pulses have been described 
in Section 2.6.1, it should be emphasized that they have been obtained for a simple 
nondogenerato system and arc not directly applicable to the present situation. 

For largo values of j Lhe summation may be approximated by an Integration. 
Setting m = jcosa, the results quoted in Eqs. (2.237) may be replaced by continuous 
variable K given by 

[ sina . Aj = ± i 

^cosa1A) = 0 (2.2M0 

Fur A.' = 0 

gj'.n Z^m sin(Km9) —••   y f^da sin a cos a sin(0cosa) 

= (sine - 0cos0)/e2 = 1,(0) (2.2U5) 

(72) 
where j  (ft)   Is a spherical Bessel function 

• J. 

-07x7 ZKm sin(Km0) —••  -5- rTrdasinzasin(0sina) 
* JT' ^ Jo 

=   ■|L[HO(0)-H|(0)/0] 
(2.246) 

where the H (ft) are Struve functions 
n 

The two forms for the area theorem in the presence of deg-^-mcy for large j are 
now obtained by combining Eq. (2.2^3) with Eqs. (2.2^6) and (2.2^7). It is again 
evident from these results that a zero n pulse should exhibit transparency. 

For small ft, th? area theorem for Q branch transitions reduces to the small 0 
form of Eq. (2.68) when orientational averaging is included. 

As in Section 2.6, pulse shapes may be obtained in the limit of extreme saturation 
broadening. Setting g(Au)) = '(Atu), Eq. (2.1^5) then goes over to 

d2<T a'    r ,   4 

dxdV    ^  TTH ^KmS,n(KmCr) 
1 (2.2U7) 

where t' ■ t - x/c and ?»'  la as defined in Eq.   (2.30). 

(iP>) 
Examples of steady state pulse profiles have been obtained numerically        .    For 

Q-branch transition with J = 2, the result may be given in a simple closed form^'  '. 
One obtains 

k9 
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a  = -4tan"l(-/5 csch w/r) 
(2.248) 

where w = t - x/v and 

J_ - _L + a'r2 
v " C "^ ~2 (2.249) 

The electric field is 

PEoC .    4./5" sech w/r 
T>      '   T(i + 4sechzw/T) 

(2.250) 

which is shown in Fig.   13. 
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Section 3 

CEREMOV TYPE RADIATION FROM LIGHT PULSES 

3.1 Introduction 

Optical rectification in non-linear dielectric media produces a polarization that 

follows in time the intensity of the optical pulse. The so-called dc polarization has 

frequency components in the millimeter and submillimeter region of the spectrum, and in 

general has vector components both longitudinal and transverse to the direction of 

light propagation. Submillimeter radiation can therefore be generated from picosecond 

light pulses. A general theory of microwave generation via the dc effect does not 

exist. 

The most important feature of the generation of the microwave field from its 

source is the fact that the source polarization moves through the crystal at the group 

velocity of the light pulse , which is approximately c/n, whereas the phase velocity 

of the free microwave field in the same crystal is usually lower, c/m, where n and rn 

are the optical and microwave indices of refraction. Because of the infrared resonances 

between the optical and microwave frequencies, m is usually larger than n, so the 

microwave field moves slower than its source, in close analogy with the Cerenkov 

radiation from a relativistic electron. The analogy with Cerenkov radiation will be 

shown to be very close for the microwave field generated by the longitudinal component 

of the polarization. Our understanding of the microwave generation from light pulses 

in non-linear media is greatly increased by studying the Cerenkov analog of the problem, 

viz. the coupling of the source to the free fields of the dielectric. For example, 

one learns to what extent"phase-matching" is important. A comparison of the induction 

fields and the radiation fields shows the possibility of greatly increasing the micro- 

wave power generation by changing the boundary conditions on the problem in such a 

way as to couple to the induction fields. 

This work deals with the radiation from longitudinal and transverse polarizations 

in optically Isotropie and uniaxial crystals. The physical picture that one associates 

with these phenomena is a light packet accompanied by a dc polarization radiating 

microwave power in Cerenkov cones, one cone system at the leading edge of the pulse 

and another at the trailing edge. The interference between these Cerenkov cones is 

completely accounted for by Fourier analysing the polarization pulse into its 

frequency components. The radiated fields at any frequency are proportional to the 

corresponding Fourier component amplitudes of the equivalent source current.  In 

the same way, the interference between waves originating from different regions in 

the cross section is exhibited in the Fourier-Bessel transforms of the traverse 

distribution of source polarization. 

The first problem that we treat is that of radiation in an optically Isotropie 

medium. Both longitudinal and transverse polarizations are treated. The theoretical 

technique is to solve the inhomogeneous differential equations for the field potentials, 

then derive the actual fields by differentiation of the potentials. The second 

problem is that of a uniaxial crystal, in which the tensor nature of the dielectric 
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constant so much complicates the problem that it is easier to deal directly with the 

field quantities rather than the potentials. The method of analysis here is to 
resolve the source polarization into a continuous spectrum of plane waves, find the 
electric field components for the ordinary and extraordinary plane waves of microwave 
field, then sum them all through integration to find the complete ordinary and 
extraordinary wave fields. 

3.2 Optically Isotropie Media 

The microwave field is derived from the vector and scalar potentials A and ty: 

H = curl A (3.1a) 

E = - - M - grad A. (3.1b) 
c at 

The polarization field P is split into its homogeneous and inhomogeneous parts: 

P = P + P. (3-2) 
—  —^  —j_ 

where 

and Pi, the inhomogeneous part is the source polarization caused by the dc effect in 
the non-linear medium. The potential field equations are 

2  2        I^P 
2A  m  a A     Vr  I /, M 

2 -.2     c at 
c at 

2  2     , 
v i; - — —I - -|divP (3.5) 

c at   m 

divA + ^- |A« 0. (3-6) 
~ c at 

This last is the gauge condition.  Only two of the three equations are independent. 
We use the first to derive A from Pj , the third to derive i|( from A, then find E and H 
by differentiation of these potentials. The source of A is a current density. For 
Cerenkov radiation from electrons the source current is the actual current due to 
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-h-nJ 
motion of the electron, and the right hand side of the wave equation for A is  . 

The comparison between the Cerenkov radiation from an electron of charge e-, and 

that from a longitudinal polarization front of length A and face charge Q is easily 

exhibited.  In both cases, let z be the direction of the motion of the source. For 

the electron, the charge density is given by 

P = el6(x)6(y) 5(z - vt) (3.?) 

where v is the electron speed. The current density is 

J = pv = e1v6(x)6(y)6(z - vt) z (3.8) 

We use the time convention exp (-iujb) throughout, and thus have the Fourier component 

of current at frequency m as 

J = 5J =i- 6(x)6(y)eia)z/v (3.9) 
—(U    u)  2TT 

The vector potential equation is therefore 

2 2 e1 .      / 
2. m u)    „ 1     ,   >   iu)z/v ,_  .,   > 

V A    + —f- A    = -— 6 p)e      ' (3.10) 
UJ 2      u)      ncp 

c 

where A    =  (0,  0, A  )  and where 6(x)6(y)  has been replaced by 6(p)/2np  in cylindrical 
coordinates.    The polarization front is represented by 

Ij - QCl - 1/TT tan"1f(z - vt)/A}] ? 5(x)6(y) (3.11a) 

Its Fourier component equivalent current  is 

.  D *   Q      -AUI/V    iiuz/v    6(p) 
1     = -IIDP      =  z — e     '   '       e —c— ,„        s St   / ~IUJ 2TT 2np (3.11b) 

Thus the vector potential •'.rave equation is 

0 2 

(7    +-f-)A          1 
(i)        c     -Itu (3.12a) 

..a. 5(p)eWve-A|«.i/v 
TTCD (3.12bj 
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where again A = (0,0,A ). The energy radiated per cm of path per unit frequency- 
interval by the electron is 

_d!vL: .eii/,-    cMcu (vio) 
dwdz     liM     W^l ^■13> 

Hence, by comparison of the two vector wave equations, the radiation from the advanc- 
ing polarization front must be given by 

d2w *r£('-^e-2— (3.^) dcoc 

For a single electron, e-, = 4.8 x 10   esu, and the energy radiated per cm path per 
cm"1 bandwidth is ~5 x 10~2° erg. For a picosecond pulse focussed to 10 Sratts/cm 
in KDP we have PT = 8 esu in say a square millimeter section, so that Q = 8 x 10"2 esu 

S J. u j. ii 1 
= 2 x 10 e-i.    The energy radiated here is now ~ 2 x 10"      erg per cm path per cm" 

1 andwidth at wavelengths long compared to A and to the cross section dimensions. 
Admittedly,  the energy output in this case is small,  but techniques for increased 
coupling can be found,and the important point is that the equivalent of 10° relativistic 
electrons in a cubic millimeter volume is easy to achieve with picosecond pulses and 
NL0.    The defocussing of light is less serious a problem than Coulomb repulsion and 
beam collimation in megavolt electronics. 

We now proceed with accurate calculations of the field quantities for this 
Cerenkov type interaction - the weak coupling situation. 

Calculation of the Electromagnetic Fields 

We want to solve 
2     m2cü2  .    .   477-iüj 

v   +    r2      ^cu      —z        rI(jJ 

and 

C'      "^ c 

V,Aa,--c—^ -■  0 

(3.15) 

(3.16) 

for the general polarization pulse; 

Pxtr,!) ^F.U.y^z-^-) (3-17) 

which is derived from a oollimated picosecond pulse.    Fourier analysis of F    gives 

F2(z-vt) i /* [G2MeinZaj/c] e-1^ dcü 
(3.18) 

5^ 
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The following quite general form of F (x, y), expressed in cylindrical coordinates, 
will take care of most polarization forms derived from rectification of the mode 
fields of a laser output: 

(Mx,y)-.P,(/M) • ^(yole1^ 

The vector p will have longitudinal and transverse components. Because of the 
linearity of the problem, we may consider either one component alone and also 
select one 1-component of the transverse polarization distribution. Equation (3.15) 
now becomes 

72+ miadjAü> . ^_Fjf(/))ei/^G2Meinw2/c ^ ^ 

where A stands for either of the rectangular components A • i or A • 5 correspond- 
ing to transverse or longitudinal polarizations respectively. The obvious method 
of solving Eq. (3.15a) is to substitute 

Ata! U(/e)tll^*,nu'Z/e (3-20) 

which yields for the scalar u(p) the inhomogeneous Bessel equation 

^ = ^-3r + (s8-#)u '*$*-WW (3.21) 
2  a)   2   2 

where S = -^ (m - n ) is the square of the transverse k-vector. 
cc 

The solution u is readily found and will be written down later. For the moment 
it is instructive to look at the structure of the solution being forced on this problem. 
The only boundary condition is the radiation condition. Equation (3.20) is consistent 
with a linear loss (diffraction) balancing the energy generation. The exponential 
factor einu,z;'c in Eq. (3'20) is an expression of the translational invariance along 
z of the problem. There is no possibility of exponential growth of the microwave 
field along z here. The magnitude of F (p) in Eq. (3.15a-) is independent of z, which 
is an approximation that neglects diffraction of the picosecond light pulse along the 
path of interest, and neglects absorption of the light pulse. Of course, the micro- 
waves rob the light pulse of some of its energy, and they take their momentum from 
the crystal directly, and some momentum from the light pulse indirectly via the 
crystal. 
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Fields Generated by Longitudinal Polarization 

ifcp iiumz/c), When f) m %, the solution of E<is. .p-g)) and (3.21)  is A    = (0,0,ue   V 
Eq.   (3.l6) gives i|r    = -^ ue   ^e        '   .    From Eq. T^.l) we therefoi 

The energy radiated is found by integration of the Poynting vector 

S(t)= ^-^Re^iDXHit)} (3.23) 

Cl{m z ■4-Re{/r(^x W^} (3.24) 
Taking into account the frequencies UJ and -u) simultaneously we calculate the energy 
radiated per unit frequency interval through a cylinder of 1 cm length coaxial with 
z by integrating the («-derivative of Eq. (3.2^) over the cylinder surface. The 
result is 

^7 : C-*- Re {(EwX H^P + (E-w X "-^p}?** (3-25) dcudz 

When p is large enough for the cylinder to enclose the sources completely, Eq. (3.25) 
is independent of p. From Eq. (3.22), 

x~ ~'Mip      c \ m* I    dp (3.26) 

and Eq. (3-25) becomes 

d2 w   UJ I,    n2 \- . / dü - du 
dwdz  4 V   mz/fc",^\ud/> "dPI (3.27) 

This formula is for F (x, y) ~ e ^ = cos Tcp + i sin ly wherein the cosine and sine 
terms radiate Independently. If only one is present (e.g. cos icp) we have to divide 
Eq.(3.27)by 2. Note that if2"   2     ,    if.u, -iJUp,, except when I = 0. 

^ J0  cos rcpdtp = f Re[e ^ e ^]' 
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Fields Generated by Transverse Polarization 

When p = x,  the solution of Eqs.   (3.20) and (3.21)  is 

Aw=(ueiJ*einW2/c .o.o) —(ucos^e'^So.o) 

• ucos i<)bcos<^ einwz/CyS-ucosi^sin^einwz/c ^ (3.28) 

vhere the cp-dependence has been written more explicitly.    Equation (3.l6) gives 

Use of Eqs.   (3.1) and (3-2) gives the fields E   and H    from which one readily obtains 
-Ml)     ~U) 

Re {(Ew ***),>}* if eesM^I (u |j5- -D|L) (sin^+ -^-COS^ (3.30) 

We have dropped terms in E and H that fall off faster than l/p2 because they will not 
contribute to the radiation field. These induction fields are capable of coupling 
energy out of the system through microwave structures that come in to within a couple 
of wavelengths of the source. The presence of such a structure changes the boundary 
conditions on the problem, so that our equations no longer give the correct expressions 
for these fields. A simple analogy may be helpful here. A radio frequency choke 
is a poor radiator because of the small overlap of its fields on the free fields of 
the vacuum. The same choke coil when uee-l as the primary winding of a transformer 
is capable of coupling strongly to a transmission line connected to a secondary 
winding. 

The formula for the energy radiated by the transverse polarization as calculated 
from Eq. (3.25) depends on whether f = 0, f = 1, or f > 1. The result is: 

d2w 
dtüdz 

d2w 
dcüdz 

d2w 
dcüdz 

i = o 

iM 

Tll + ^)7r,'Vd7-u-d7) (3.31a) 

üL(I+ 3n
2 \ jr_ -.p /u_düL ü 

du \ 
4 ll+ m2 IX'M 1? u^i        (3.3lb) 1 + 3n2 

m2 

1 + n2 \ 
4 \ rr\z I 2        \  dp        dp i>1 " 4 \  Tn^i 2   \  dp        dp } (3.3ic) 

The Eqs. (3.27)(longitudinal polarization) and (3.31)(transverse polarization) 
both contain the expression , , du  - dus in which u is the function that solves 

/-> ~, \ ip (u — - u r—) 
Eq. (3.21) MV dp    dp' 
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/du  - du» 
Evaluation of ip(u r u -—) 

dp    dp 

The solution of Eq. (3.21) can be found mont readily from expression 

uip) - -^^f^CwP/PoWPoWPo C    ^0 

where g (p|p ) is the Green's function of the problem 

B, w/t,). - izY& 
The Green's function for Eq.   (3.33)  is (83) 

(3-32) 

(3.33) 

and 

qjL{p/p0)ZTT*\ Jj,(sp)Hj,(sp0) p<Po 

q/P/Po)^2 ^2^Po)»Z^P) PZPo 

(3.3M 

(3.34b) 

Both expressions  (3.3^)  must be used to express the field inside the source.    We need 
only Eq.   (3.34b) for the radiation fields.    Combination of Eqs.   (3.32) and (3.34b) 
gives 

u(p). ^zfM[foPMjt{sp0)p06p0]Hr{sp) 

- tila^iM G
<
(S)H''>(S/?) 

(3-35) 

where we use G (s) to denote the Fourier-Bessel transform (the expression in square 
brackets) of the source distribution. 

Thus 

i^lJf■-ü^)=^4#lG^M^[G'(s^^[H<'ls/J,^-H?,(s^-c•c•] 

0SM [G
A
(S)] (3-36) 16"'-tf 

Energy Radiated in an Isotropie Medium 

Equation (3.36) is now substituted into Eqs. (3.27) and (3.31) with the follow- 
ing results 
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Longitudinal Polarization: 

d2W 
dzdcu ""^('-sWM8^8']2" 

where 

and 

e. = 1  for 1 = 0 

I. - S for i = 1, 2, 3, ... . 

(3.37) 

(3.37a) 

(3.37b) 

Transverse Polarization: 

d2w 
dzdoi / = i 

"'■^('♦»^ii^'rk'"]' (3.38a) 

dzw 
tt,'**>J$-['*&)\^f[^]S (3.38b) dzdcu 

In the above expressions is the transverse component of the k-vector of the field. 

For any actual polarization distribution, one uses the decomposition of Eq. 
(3.19)2and sums the Eqs. (3.37), (3.38) over i.    Equation (3-37) contains the factor 
(l - ^2)  in close analogy with Cerenkov radiation. The transverse polarization 
case does not have this factor, because the radiated power does not vanish when 
m = n. This is in sharp distinction to the case of Cerenkov radiation from a trans- 
verse electric dipole on a relativistic particle. The distinction arises because 
for the particle the equivalent current sources are always along the direction of 
motion, and furthermore, the transverse dipole partly transforms to a magnetic dipole 
at right angles to both the electric dipole and the direction of motion, fjuch a 
Lorentz transformation does not enter the NLO case, where the equivalent current 
source may actually be transverse to the direction of motion. 

The case m = n represents a match between the speeds of the optical pulse and 
the microwaves. In the case of SHG this phase matching causes a large increase in 
power. The present situation is different, because of the essential role played 
by diffraction of the microwaves. Since (l ± n /m ) is slowly varying in n/m, 
nothing spectacular happens at or near n = m. Transverse and longitudinal polariza- 
tions radiate about equally well according to our formulae. 

Next we examine the case of an anisotropic medium to see what new features are 
introduced. 
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3.3    Optically Anisotropie Media 

This method of analysis is more powerful than the one used for Isotropie media. 
In essence, we resolve the polarization pulse into its plane wave components,  find 
the electromagnetic plane wave for each polarization wave component,  then add all 
the resulting plane waves to obtain the total field. 

Again we start with 

h ^ = ApFl (x'y) F2 (* " ? (3.17) 

The Fourier transform of F    is given by 

F.(x.y) = /rMGl(kxlky)e
l(k't,t+^,dkxdky (3t39a) 

or 

Fl(p^)=^/c/0
7dÖ.Gt(x)ö)ei^C0S'ö-*> 

(3.39b) 

where x = p cos cp, y = p sin cp, k = K cos 9, k = K sin 9. The inverse of Eq. (3-39b) 
gives 

Giix.B)- ^/o
00do-.(T/o

27rd/xFl(c7)M)e-i^cos<ö-'1) 

Again assuming that F (p,fp)  = E.F (p)e 

OAOa) 

G,(x'ö)l Ti^ $!*** *nwf*ir*H'rM™(9''')*^ (3.^0b) 

27r Z,e      G {K) (3,1+1 

where G (x) is the Fourier-Bessel transform defined previously in Eq. (3.35)^ and 

1 (3.39c) 

Using Eq. (3.l8) to transform F now gives the combined result 

Dlrit)47e^!^/da)G2M/d0K»c6itK)/dö{eiu'(,-nz/e e1^005«0"0)^ ö}   , , N 
^-x*  r y 2TT j/,   z •'o     ^  L J   (3.^1) 
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The quantity in curly brackets defines the frequency, wavelength, direction and 
starting phase of an elementary plane wave component of polarization with amplitude 
P .jiuj.Kdx.do where 

If such a plane wave gives rise to an. electromagnetic wave/With one field component 
t \    /     no. ^   J u   »   -iuHt " nz7c7 iKp cos (0 - cpT + Ucp , „.„^ (say x) of amplitude and phase 6  e       '  e H       T    T duJCdKdQ, 
the total field component due to xne totality of elementary plane waves is given by 
the integral 

Ex(l,t) = Z/^/o
MdKK/^d0{(^wx/p(ü/c)pw<_Lre-i^62yG^K) (3.^2) 

Our problem reduces to finding the ratios e /P    .  e /p „ and 6 /p „ (where e.g. x' uir y' (jK    z    ttK 
6 = £ „) and integrating Eqs. (3.^2) to obtain the electromagnetic field. These 
ratios are found in the general case by solving the inhomogeneous wave equation. 
The general solutions can then be specialized to the required uniaxial crystal or 
biaxial crystal, etc. 

Solution of the Inhomogeneous Wave Equation 

In the anisotropic medium, the displacement vector is related to the field 
intensity and the inhomogeneous part of the polarization by 

D s €E + 4 7r PT (3A3) 

The wave equation is now 

l d2E        -Air      d2Pj 

(3.Mm) 

Resolved into Fourier components.    Equation (S.^a) becomes 

O.Wtti) 

where & e = E , the Fourier transform of E, and k = ks  'A subsidiary condition, 
fron^ div coming fron^ div D,   = 0 is 

~k 
0»  div DKS k •(€•£(<+ 4 TT P^) 

,    A A - A     A   ./? (3.^5) 
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The inhomOi 
in his study on SHG. 
The inhomogeneous wave equation (3.^h) is solved by the method used by Kleinmanv 

VM,» M.»*«. 

where S is the wave normal (k = kS), e is the direction of polarization of the E 
field for a free ordinary wave and ep Is the direction of polarization for the free 
extraordinary wave, e , e ,  and S are not orthogonal. When Eq. (S.^b) is resolved 
along these three directions we obtain 

(^)2{-k2t(t ^lE.-k^^^E^k^E.+ k^Ej 

-(••1,1, +f •#lE8)-f»ili» 4tf§ $ (3Mc) 
UK 

The quantities e • e and e ' e in Eq. (3.^c) are found by solving the homogeneous 
wave equations for the ordinary and extraordinary waves respectively. These equations 

are 

i^UlzK-^Az^]-''^-0 (3A7) 
Substituting e • e  into Eq. (3.^c) we find 

1»* 

(I") [(kf-k4){t(H)-tl}llMk;-^){l(t4l)-^iJ 
-€^E,= 47rpw^ 

The scalar product of Eq.   (3-^d) with S gives 

E3 = -47rp    (M)/($.«.|) {3'kQa) 

which is now substituted into Eq.   (3.^d) to give 

= 47rp    [S- U.a)(^)/(§...§)] (3.^e) 

In anisotropic media the D vectors of the ordinary and extraordinary waves are polar- 
ized in the directions cL  and cL respectively, which are both perpendicular to the 

A 1      2 A 
wave normal S, and each is perpendicular to the non-corresponding e vector 

^.o.l,.!, ^'^ 
The scalar products of Eq. (3.,+1»-e) with d and dp yield the remaining field components: 
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E2=^(^^[4-P-^V«-sKp.s)/(s.€.s)/(d
A
2.e2)(k

2-k2
2)    (3A8c) 

In equations (S^?) and (3.^8), k ,  denote the wave vectors for ordinary and 
extraordinary waves and are given in terms of the phase velocities VQ and v of the 
ordinary and extraordinary waves belonging to the wave normal S; i.e.., k = w/v , 
k2 - «/V 

These ratios like £ /p  needed for Eq. (3.^2) come from Eqs. (3.^6)  and (3.l)-8) 
when e , e , and S are projected on to the x, y, and z axes. To progress from 
Eqs. (3-^8), we specialize to the case of uniaxial crystals. 

Uniaxial Crystals 

Before we can use Eq. (3.^2), we have to evaluate the various scalar product 
terms that appear in Eq. (3'^8). Assume that the motion of the source polarization 
is in the direction of a principal axis of the dielectric tensor e- The direction 
of motion is ^ •  x and y are also principal axis directions. For a uniaxial 
crystal, g = e makes ^ the optic axis while e = e makes 3: the optic axis. In 

xy yz 
the first case the source moves along the optic axis with either transverse or 
longitudinal polarization. The latter of these two possibilities can be solved 
almost by inspection by looking at the solution for Cerenkov radiation from an electron 
moving along the optic axis and adjusting the coefficients in a way suggested by 
comparison of Eqs. (3.13) and (3-37) • We will concentrate on the transverse polariza- 
tion case, for motion along the optic axis. This case is easier to treat, though 
of perhaps less interest than the case where the motion is perpendicular to the optic 
axis with the polarization along the optic axis. In this latter case the Cerenkov 
cones are not circular and the integration over 9 in Eq. (3^2) is best omitted so 
that one can consider the azimuthal distribution of radiated energy. 

Figures lU and 15depict the ellipsoids of wave normals for uniaxial crystals. 
The relevent phase velocities v corresponding to the wave normal S = (S , S , S^) 
are derived from the equation for the normal surface 

z 

Sx2      „    sy2 s72 • o 
vp

2-vx
2        vp2-vy2     vpz-vz

2 (3.50) 

For the source moving along the optic axis (Figure l), VM ■ ¥M ■ TA ■ c//ev and 
v2 = v = c//e_. The solutions for v are then: 

x   y   0   'v x 
'2     -e    ~,y   -z- ■ ■    ■        -p 

V» = v0 = C A/^7 (ordinary) 

(3.51a) 
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and 

/   c2 c2 \"2 
Vp= vc = I -f~ cos2 ß + —— sirr)9 ) (extraordinary) 

X   x z ' (3.51b) 

Equations  (3.51a) and (3.51t)} correspond to a sphere and an ovaloid respectively. 
Here 0 is the angle between S and z.    For the source moving transverse to the optic 
axis  (Figure 15)>v   = v   = c//"e  ,  and v =v =v =c//"e   .    The phase velocities are 

X ^ X y     2     U Z 

Vp =v0 =C/v7^ (ordinary) 
(3.52a) 

wp   ve = \-%- sin2/9cos2Ö+-|-(sin2/9sin20+cos2/3)l       (extraordinary) 
L   Z X J (3.52b) 

Here 9   is the azimuthal angle for the wave normal S. 

We now have sufficient information to evaluate the various unit vectors and 
the scalar products in Eqs. (3.^8). The results for the source moving along the 
optic are as follows: 

3.    = (sin 9,  -cos 9,  0) 
9.    = (cos B cos 9,  cos 0 sin 9,  -sin 0) 
S    = (sin ß cos 9,  sin ß  sin 9,  cos B) 

e-S = e {V\ sin B cos 9, T] sin B sin 9, cos Q); T] = e /e 

ii = \   2 2       2     h 
e    =  (cos    B + Tl    sin   3)2 (cos B cos 9,  cos 0 sin 9>-'T1 sin fl) 

9. 'P = sin 
tj.%--  (cos^ 

* * 2"" 2 
(a .e-S)= e (Tl - 1) sin | cos ß;  (S • e • S) = (t, cos    ß + T1   sin   ß). 

9; cL   «p = cos ß cos 9| | • 1 ■ sin B cos 9;  (cl    • e ) - 1 
32 B + Tl2 sin2 ß)"2  (COS

2
 B + T] sin2 ß);(?L    •  e  • S) = 0 

(3.5^ o; 

The results for the source moving transverse to the optic axis with the 
polarization along the optic axis are 

^ = (i- sin2j3cos29r,/2 (0, - cos/3,sin/3sin0) 

d2=(i-sin2/9cos2erl/2(i-sin2)3cos2ö,-sin2/3sinÖcosö>-sin/3cos/3cosö) 

s = (sin/3cosö, sin/3sin0,cos/3) 

e2 = (i-sin2/3cos20rl/? [i +(Tj2-i)sin2/3cos2e]"l/2   (i-sin^os^.-^sin^sinecosÖ.-^sin/Scos/Scosö) 
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f «s =€z(i7sin/3cosö,sini3sinÖ,cos/3) 
A     A 
P =x 

A    A A     A 
dl»p = 0;   d2«p=(i-sin2^cos2ö)l/2 ;    p« s = sin/9cosÖ,    d^e^O; 

d2«e2 = [i + (7?
2-i)sin2)Scos2ö]'l/2 [i+(T)-i)sin2/3cos2öJ; (^'«'s)^; 

(d2«€«s) = (')7-i)sin/3cosö(i-sin2/9cos2ö)l/2 ; 

(S'€'b)= €2+ez(i7-l)sin2^cos2Ö (3.5M 

We are now in a position to combine Eqs.   (3.^-6) and (3.^8).    The case of motion 
along the optic axis is treated here.    The following substitutions are first made: 

^2^.2 

k*-K«.(f),(T»+n,-').l) tf.^.mflrKn*-      V'   . .] 1   vc/ z   vc/ ^ cos^+^sin2^^ 

sin/3 = T/(T2+n2) 2. _ 2\l/2 cos/3=n/(T2+n2)l/2 

The field components to be substituted into Eq.   (3.^2) are thus 

£x/47rp, sin2g     , n2cos20 T2cos2e 

>, -.   n   „    -sinQcosQ   .      n2cos0sin0  . T2cosgsing 

(3.55) 

(3.56a) 

(3.56b) 

^z/47rp 
-^nTCosö nrcosö 

(^tl4.n8)(^?«+ni-^i2)      €z(i7T2+n2) 

The integration over 9 is performed first.    These integrals are of the form 

(3.56c) 

^/^(f)*'*^-*^11-^*! 
2      2 

where C(e)is the sin 9, cos 9, sin 9 cos 9,or cos 9. These all integrate into 
derivatives of Bessel functions. For example, consider the easiest one with 
C(9) = cos 9. We substitute p cos cp = x and p sin cp = y. This integral is now 

- r8tr
Cof##iÄ(xcol^,lnl)f'^-^ de 
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Using the well known integral representation of the Bessel function, J (f) = 
.-I        . 
-— 0 e   0 ^    ty)  th« above integral is obviously a derivative with respect 

to x of a Bessel function, and in fact is - e ™ - J' (xp). The other integrals are 
only slightly more complicated. p 

The Eqs. (3.42) for E , E and E in terms of the remaining integrals are now 
as given below in Eqs. (3.57) 

f {^T1 +nI)   L (tüTp/c) 

r- i^T00       -iw(t-nz/c) / -j \2 /•00
i «/      ^vf Ey * T 4tr«,J!vrdw # (-^-) G2(w)J dr  T 6f((jT/c){ 

+ n2       ^rcos^sin^Ji>I^.cos^sin^J^    /c)l    (3.5Tb) 
(i7T2+n2)(^T2+n2-i7€z)  L       r     r (wrp/c) T-     T 1       r    j 

T2 r       ■    ■       J/(ujr/>/c) ...        ,.11 + —;—5—TT cos«P sind) -r cos4> sm^J/Vurp/c) ^ 
€z (T7T

z + n2) L        (CJT/J/C) r JJ 

{ ,    2 zT\    2 S 1 f I cos^ J/ W/Ol (3.57c) l (i7T2+n2)(i7T2+n
2-i7€z) L   T ^  r j 

We now proceed with the integrals over T- Quite a few of the integrals can oe 
disposed of immediately. Those/that involve a Bessel function divided by p have 
asymptotic forms that go as p"   and contribute nothing to the radiation field. 
They are induction field terms. Consider now an integral like 

Set   J/' (^ XP\' T Hf' (¥ T^)+ "2 H(  v^c T'p' . Replace the integral 
along the positive real axis by the sum of the two contour integrals shown in Figurel6 
where H^ 11 is integrated along the upper contour and Hv2)1-1 along the lower. 
(1)    ^'(2) * 

H   and H   vanish along their respective contours at infinity. The vertical 
contributions on the two contours cancel as can be shown by using the relation 
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iH   (ix) =(-!)'  H   (-ix). Thus the sum of the contour integrals equals the 

wanted integral. The poles are located at T = V^Ke + i^) -n2 • These are in the 
first and third quadrants. The lower contour integral encloses no poles, thus it 
vanishes. The upper contour integral is 2j\l  times the residue at T -Tie - n2, and 

thus  f^lQ [ ^ (^-n2)"2] Hj0 {^(T^-n2)"^)}   , ^6 Same technique is 

used for the other integrals. The contributions from the pole at T = -i(n + iA')//1!! 
involve the function IT '•(■! - ^- P) which falls off exponentially in p, and gives 

no radiation field. The surviving integrals are now: 

Ex . -2,r'iI*i,*jfda,e"
M,"n'/Cl (ff G2(a,) [o^k») HJ"" (KTV) sin

2« 

:2 

E„ = -27r2i Z ^if*^^"Mt"nZ/C) jjff G2(^) [ G'(kT
0) H<"" (k>)cos^ sin^, 

. -30 •y 

+ ^r Gf(kT
e) ^"^(k^cos^sin^.] 

E =-27r2iZe... (3-58) 

0    e ' 
Here 11 and kl are the transverse k vector components for ordinary and extraordinary 
waves 

1 (3.59) 

To justify the labelling in Eq. (3.59) we compute the corresponding phase velocities. 
For the ordinary wave we have 

^ - UQ' " n Vc/ +IKT'   \C/ fx (3.60) 

Therefore v = c/Ze , which is correct for the ordinary wave. For the extraordinary 

wave we have 

(3.61) 

2n        n2  
Let 9 be the angle between k and I« Then    COS »e ^ ~— -2 (• L^   » which cati 

can be solved for n . 

N*;EC0S*/3t 

i-d-^jcos2/^ (3.62) 

Substituting Eq. (3.62) into Eq. (3.6l) we get 

.2 
— •      > 
v.2  i-(.-^)cof'flt (3.63.) 
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M||f 

or 

ve2 . cos2/3e   | sin2)8e 

C2 (3.63b) 

This is identical to Eq. (3.51b), so our identification of this wave vector with the 
extraordinary wave is correct. 

The Eqs. (3.58) are of the form 

(3.64) 

with similar expressions for E and E . The superscripts o and e refer to the ordinary 
and extraordinary fields and trie *-"^  fields can be treated separately. The 
asymptotic expressions for E , E , and E can be written down by using the asynptotlc 
relations: 

-^(^-iHn^H^^^e^^1'^^ 
(3.65) 

The results are: 

m.       r       , 9 ,    o/    2     \'/2   «Ik? ^-2^«»/* 1      , 
EA^I 2 7r2.(üi/C)2G2(w)Gf(kT

0)|-^ö7|     e ' T ■ sm« ^ 

(0) 

y 

(0) 

3 

and 

co$  9 *      * 

ikfp-{H*i)*S*] 

*~'V*ik&^*vWr ******* 

(3.66a) 

tfm «i -2ir2. i^Lwf^.^tfcf.«*^- 
cos tee 

(3.6Ta) 

The cylindrical componrntr. arc readily found from the rectangular components.    The 
angular factor:« arc ar. follows 

Mi .o» Ep <w) "• iin^S'n2^ e 

101 E* (wWsin#CO«2^ # .i# 
(3.66b) 
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gfim) -- o 
The magnetic field components are obtained from 

(2.6Tb) 

H(w) ■-  -i (^-jcurlElw) (3.68) 

H;
O)
(Cü) • ■n E^lw) H^ ((D) Ep (cü) Hz ((JJ) 

ck!  (or , 
(3.69) 

«•). »). («. ck. 
Hp (w) . o    H^ (w) »n E/) (w) - „, -, 

Evaluation of the Poynting vectors gives 

(t), 
H, (w) » 0    (3.70) 

[E'0(W)XH«»M]p - = E;,E;0,= 8^)3|G2(W)| [G^k^f ^Sin%COS
22^(3.71a) 

and 

(3.71b) 

Integration -if the Poynting vector gives the energy radiated. For the ordinary 

waves we find 

^^•^M'M*«. ■Mil 

where t- ■ 1 for t ■ 0 
• 1/8 for cos <$,  3/8 for sin 9 
> \  for I > l, 

while for the extraordinary waves the result Is 

(3.72) 

(A»  .„_« 
duid* -• im&tt ^r€' (3.73) 

3.U   Sumary 

The interesting ease that we still have not worked out in detail is that when» 
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the source motion is transverse to the optic axis, with the polarization along the 
optic axis. This will probably be examined later. The case of motion along the 
optic axis with longitudinal polarization is less interesting, but the problem 
can be solved by inspection as noted earlier. 

The coupling problem solved here between the NLO source polarization and a 
microwave field is probably the only one that has been treated anywhere to date. We 
were able to treat the problem fairly exactly because the microwave field we considered 
is unguided. The case with different boundary conditions on the microwave field 
will be more relevant to the submillimeter wave generation problem, and we feel 
better prepared to look at such f^ases now that we understand the most elementary 
one. 
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Section k 

AN EXTENSION OF TPF TECHNIQUES TO SBÜLTANEOÜS POWER SPECTRUM AND PHASE 
STRUCTURE MEASUREMENTS 

There is considerable interest in non-linear optical phenomena that modify the 
amplitude and phase structure of short optical pulses.    Some of these phenomena have 
been discussed extensively in the literature already, such as the self-steepening 
of light pulBeBupropagating in Kerr-active liquids and the associated self-phase 
modulation»     *    '    Indirect evidence of the phase-modulation has been inferred from 
spectral broadening measurements!    ) which show a characteristic spacing'™ between 
the zeros of the power spectrum of the output pulses.    More direct evidence has been 
obtained by studying the output from a grating pair compressor with and without the 
Kerr-actlve liquid in the beam.^  ^    Evidence of self-steepening processes occurring 
in a nnde-locked laser has been obtained previously in this laboratory.'     '    More 
recently,  interest has developed in non-linear modifications to the propagittlng 
pulse in the presence of the propagiting microwave signal generated by optical 
rectification,'^ ' and In simultaneous front and back end shock formation in high 
power optical pulses.'™' 

I 

Much of this interest centers arouBd the possibility of generating optical pulses 
of ~10"1^ second -»r shorter duration/    '   The various proposals for 10"^   sec pulses 
Involve the addition of phase modulation to the pulse and the subsequent compress! <n 
of those parts of the pulse that hsve the appropriate frequency sweep charscteristies, 
using pulse compression techniques similar to those  initiated in this laboratory.'^*' 
In this type of investigation,  it would be desirable to obtain simultaneous power 
spectrum, phase structure and Intensity profile Informtior on a single pulse before 
trying to compress it.   We hsve InvestIgsted the extent to which such infontstt Ion Is 
obtainable using the well established principles of spectroscopy and the more recen* 
two-photon fluorescence (TPF) techniqxie^     *    ' end we are  in the process of setting 
up the equipment to make measurements.    Wo believe ths*  the technique we are developing 
will come close to extneting the mBxlnum available Information from a single pulse 
measurement.    A simplified and very approxirate theory of the nraaurement technique 
and a deacrlptlon at the experimental equipment follcw.   When experimental result« 
are obtained, a more preciae theory will be developed. 

At a fixed point, the optical fields of a pulse vary In time as A(t)e1o(t) where 
the prlnclpsl term In 5(t) lBm0t.   The wte of change of the phaae ls3(t), vhlch 
varies  in time  if there is phase modulation.   One could detect the phaae modulation 
by taking a aet of filters In the aame region of apace tuned to different center 
frequenclee   *\-m2'*'i' •tc* ,,,th th* ••"* l*na,rldth 5B' •nd observing the aequential 
responses  ->f these filters aa the pulse goes by.    This Is Illustrated in fig.  17 for 
a complex phaae modulation  in a pulse with large * Ime-bandwldth product.    The optiman 
filter bandwldtha would depend on the phase and amplitude atrurture of the pulse, but 
a f**Iing for the nagnltudea involved <<an be obtained simply by considering a amooth 
pulse envelop* (e.g.. Qauaaian) with a linear frequency chirp.   The product of the 
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pulse duration T and the pulse bandwidth (AIB/STT) is denoted by N, i.e. T^'i)/2" ■ N. 
Therefore (T//U)(Au)/2n/U) • !• A filter of bandwidth (WSn/H) has a response time 
duration of approximately its reciprocal, which in this case is T//U. Hence, by 
dividing the bandwidth into /H parts, the original pulse duration can be resolved 
into /U filter responses. The curve cp(t) versus t can in this case be drawn with 
/"N resolvable points. At the same time, the power spectrum versus tu -an be sketched 
out with /N resolvable points. We do not expect to be able to do better then this 
with a single pulse.  If m identical pulses could be generated, the effective time- 
bandwidth product becomes mN, and the phase and power spectrum curves could be drawn 
with /"(mN) resolvable points. 

The construction of ^N separate filtering devices that could be located in the 
name region of space looks difficult if one thinks in terms of multilayer film deyices, 
etc. Our approach to the problem is Indicated In Figure ( 13). Ihe laser pulse is 
unalysed in a low resolution spectrometer, and the relative arrival times of different 
spectral components in the focal plane is -neasured by "two-photon fluorescence" 
techniques. The incident bean, is exfwmded in a Galilean telescope, then is diffracted 
from a ruled grating with 1200 rulings per inillimetcr. The energy in the light pulse, 
which was distributed in a disk     at right angles to the propagation direction is 
now distrlfcutrd in a volume     that is canted relative tothe general propagation 
direction. The resolving power at this point, for first order diffraction, equals 
the number of rulings intercepted by the incident beam. The stepped mirror again 
dlctributen the pulse energy into a disk    at right angles to the beam direction, 
although the energy distribution is canted in any local region.  (The angle at which 
the pulse is canted is determined by the angular dispersion caused by the grating.) 
The resolving power of the spectrometer hnr. now been degraded to the number of rulings 
In the intercept    of Figurr ( 19), while the angular dispersion is left unchanged. 

Vb hive constructed an upparatus like that shorfn in Figure (l8 ). The stepped 
mirror har about 60 elements, and war, made by annealing, grinding, polishing and 
tilting a stack of microscope slides. The filter bandwidth of this system at any 
point in the focal plane lo about ?0 cm*1, and the angular dispersion in the focal 
plan? ir. about lU  cm"1, per millimeter. 

At each point in the focal plane there is a filtering property with center fre- 
quency that varies linearly across the plane and with filter bandwidth determined by 
th* degraded resolution. The focal plane Is in the center of a Rhodamlne 60 fluorescent 
dye cell'"''. One beam ir Inverted so that the ^ verrun x characteristic is reversed. 
For a linearly chirped pulse, the wavenackets would le slewed in the manner illustrated 
ty Figure (  ^ ao they apnroach thr focal plane. The  TPF display of fmch a chirped 
pulse would t>e slewed as illustrated by the shaded region In Figure (20). Denoting 
the time of arrival of th» .pectml energy centered around frequency x by t(«) the 
TPF dlrplayr the odd function 

T(A«) - lU. ♦ A«) - t(«, - im)  • -ti-tm) (U,l) 

; 
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for the phase structure and the spectral function 

S(äII») = jlU0 ♦ AtMJt') ICOLJ - AcoJt^dt' 
{h.2) 

where the simulaneous functional dependence on frequency and time Is constrained by 
the time-bandwidth product considerations mentioned earlier. 

This new technique for using TPF has the great advantage of being able to present 
phase structure information over a frequency band that exceeds the bandwidth of the 
two-photon absorption. By adjusting the relative hor'^ontal positions of the two 
beams the frequency ^ can be placed in the middle of uie two-photon absorption band. 
Since we correlate -etween I(«D + A«) and l((i^ - A«) the sum frequency involved in 
the TPF is always (uu + &«») + (ittj - a«) = 2^ as indicated in Figure ( 20). So even 
when A« greatly exceeds the two-photon absorption bandwidth, the TPF display is Btill visi- 
ble and in fact will show an increasing contrast against the background as &.n increases. 

Figure ( 21) shows the TPF display produced by directing the output train of 
pulses from a mode-locked neodymium glass laser through the apparatus. The similarity 
between this Figure and Figure ( 20) is preliminary evidence that the technique 
works. Our aim is to optimize the technique and use it for investigation of non- 
linear optical effects that change the phase structure of picosecond pulses. 

i 
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Section !? 

STIMULATED SCATTERING AND NONLINEAR PROPAGATION 

5.1 Transient Stimulated Raman Scattering 

During the semi-annual report period, a number of experiments on s tirsulated 

Raman scattering with picosecond laser pulses have been carried out in collaboration 

wivh Dr. R. L. Carman, Dr. F. Shimizu, J. Reintjes and Professor N. Bloembergen of 

Harvard University*. 

The essential difference between stimulated Raman scattering with nanosecond 

duration pulses from a Q-switched laser and that produced with picosecond pulses from 

a mode-locked laser lies in the fact that phonons generated in the scattering process 

require time to build up. The characteristic time associated with this build up is 

the reciprocal of the spontaneous Raman linewidth. In liquids, for those lines 

which have been stimulated, the linewidths range from about 0.1 cm"-'- to 20 cm" , 

giving a phonon build up time of 0.5 to 100 psec. Consequently, while the "steady 

rtate" can be achieved in stimulated scattering with Q-switched pulses, the scatter- 

ing produced by mode-locked pulses of picosecond duration must be transient. 

More qaantitatively, the optical electric field, E(z,t), produces in the molecular 

vibrators a dipole moment, p, proportional to the molecular polarizability, o, that 

in, 

p = aE (5.1) 

In general, the molecular polarizability is a function of the normal coordinates, 

q , of the various normal vibrational modes of the molecules. Taking for simplicity 

only a single mode with normal coordinate, q, the polarizability may be expanded to 

jTive 

p-»oE+ ^o^ (5.2) 

The effect of this polarization on the electric field can be found by substituting 

Bq. (5.2) intc Maxwell's equations, remembering that the bulk polarization Is Just 

N timer, the above, where N Is the molecular density. In a similar fashion, the 

electric field also affects the molecular vibration. Let us assume 

(5.3) 

and 

» The contributions of the Harvard group supported under HASA Grant NGR22-007-117 and 

Joint Services Electronics Program Contract N0001U-67-A-0293-0006. 
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= Qfz,t)et(kPh2 " ^ + c. (5.M 

where E and E represent the laser and Stokes fields respectively, tug = UL - UU and 

k  = k - k . If laser depletion is neglected. Maxwells' equations yield 

■SEs 

(5.5) 

where 

2nN(^ ^v 

1 ' c2k   a!1 0 C ^S 

Similarly from the equation of motion for the molecular vibration 

(5-6) 

where t is now the retarded time, f is the Raman linewidth and 

(5.7) 

i     /tev 
Vo =:   ^'o 

Here ^    is the reduced mass for the vibration. 

(5.8) 

The coupled Eqs. (5-5) and (5*7) can be treated conveniently in two limits. The 
first is tne so called steady state limit where aQ»       Roughly speaking this 

corresponds to the case that the laser pulse duration is long compared to the vibra- 
tional damping time, l/r. Consequently, the molecular vibrations are able to follow 
the changes in the optical fields. In this limit 

Es(z,t) oc iKp( ** JEj l) (5.9) 

The Stokes wave experiences exponential gain with a gain coefficient 

,2 
g = 

y^z 
lEJ (5-10) 

Since v^Yp ■ o,  the integrated Raman cross section, only lines with both a large 
cross section and a narrow Raman linewidth will exhibit high gain. It is for this 
reason that nearly all of the lines stimulated with Q-switched lasers represent 
symmetric stretching modes. 
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do*- 
The transient limit, T-— » TO*, corresponds approximately to the case where 

CLX 

the laser pulse is short compared to the reciprocal linewidth. In this case the molecular 
vibrations cannot follow the envelope of the optical pulses. The general solutions 
to Eqs. (5«5) and (5.?) were first given by Wang^-^ . They have since been discussed 
in some de teil by Carman, Shimizu, Wang and Bloembergen °" . In the transient limit 
it is found that near the peak of the laser pulse 

(•ft) « «p (YlV J t lELl2dt)' (5.11) Es 

The Stokes wave again experiences gain but the gain is considerably less than the 
under steady state conditions.    This is simply a reflection of the fact that the 
phonon wave has insufficient time to build up to its steady state amplitude. 

Of particular importance is the fact that in contrast to the steady state result, 
Eq.(5»ll)  shows the transient gain to be independent of the Raman linewidth.    To 
exhibit high gain a Raman line need only have a large cross section.    On this basis 
stimulated Raman scattering with picosecond laser pulses would be expected to occur 
in different lines and in a wider variety of materials than with Q-switched laser 
pulses.      This    prediction    has      found verification in our most recent experimental 
„0^(100,101). 

Also of interest is the unusual time and distance dependence indicated in 
Eq.   (5.11).    The Stokes gain is seen to reach a maximum after the peak of the laser 
pulse.    This is a consequence of the continuing build up of phonon wave amplitude. 
This continuing build up results not only in a delay in the Stokes pulse emission but 
also results in a Stokes pulse width which is critically dependent on the detailed 
time evolution of the laser pulse.    If the laser pulse has sharp leading and trailing 
edges,  such as for example,   in a square pulse,  the Stokes pulse will be dramatically 
sharpened as the result of the high gain occurring at the trailing edge of the laser 
pulse.    If the laser pulse has a long precursor or a long trailing edge,  the Stokes 
pulse can be considerably longer than the laser pulse.    For a Gaustian laser pulse 
shape,  the laser and Stokes pulses should have about the same duration^*?/. 

5.2    Experimental Results - Liquids 

Transient stimulated Raman scattering has been observed at United Aircraft in 
both liquids and gases using a mode-locked ruby laser.    Attempts have also been made 
at the McKay Laboratory by the Harvard group to observe stimulated Raman scattering 
with a mode-locked heodymium laser.    They have been able to reproduce many of the 
results with the liquids using a frequency doubled beam but have had no success with- 
out frequency doubling and have been unable to reproduce any of the results  in the 
gases. 
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With the mode-locked ruby laser stimulated Raman scattering was observed in 
all the liquids tried. These included liquids like carbon tetrachloride, water, 
methanol, ethanol, propanol and acetic acid where stimulated scattering is obtained 
only with difficulty with Q-switched pulses. Stimulated scattering was also obser- 
ved in the more usual Raman materials like benzene, chlorobenzene, carbon didulfide 
and acetone. In all cases, the scattering could be observed with a collimated input 
beam. Sample cell lengths of 25, 50 and 75 cm were used. 

Figure (22)shows a laser pulse train and the corresponding Stokes pulse train 
f^r carboa tetrachloride.  It is not yet understood why the Stökes pulse train 
peaks early in the laser train and falls off rapidly toward the middle and end. The 
forward to backward Stokes emission ratio was measured and was found to be greater 
than 1000:1, the limit of measurability in that experiment. This confirms the travel- 
ing wave nature of the scattering. In addition, the gain in the backward direction 
was measured by reflecting the forward emitted Stokes radiation back through the 
liquid cell. There was negligible gain. This result indicates that any background 
intensity upon which the mode-locked pulses are superimposed must be at least 1000 
times less intense than the picosecond pulses themselves. This information is quite 
important in studying traveling wave interactions, such as the present one. 

Of all the liquids tested, carbon tetrachloride showed the greatest energy 
conversion. Up to 20^6 of the 0.5 J energy in the laser pulse train was converted to 
Stokes energy. The relatively high conversion allowed a Stokes pulse width measure- 
ment by the two photon absorption-fluorescence technique . Rhodamine 6G in ethanol 
was found to be a suitable material for that purpose. Figure(22)  shows the result. 
It can be seen that the Stokes pulse duration is comparable to the laser pulse dura- 
tion (5-10 psec). The fact that the two pulse widths are about „comparable lends 
support to the notion that the laser pulse shape is Gaussian    . The spectral width 
of the first ttokes and of the laser line were also comparable. 

Spectra were taken of the outputs of a number of liquids. All showed considerable 
generation of Stokes in several orders but, curiously, very little antl-Stokes genera- 
tion. The Stokes line in carbon tetrachloride and chlorobenzene was found to be a doublet, 
in contrast with the results with Q-switched lasers where a single shift of U59 cm" 
is reported. The doublet may arise because of the two isotopes of the chlorine. In 
methanol, two separate lines are observed, one at 2833 cm-1 corresponding to a C-H 
Stretching mode and one at 29^1 cm" corresponding a symmetrical CH bending mode. 
Figure (23) illustrates both the spontaneous and stimulated scattering with bending 
mode. The transient nature of the scattering process contributes heavily toward 
allowing stimulated scattering in this rather broad line to be observed. 

Near and far field patterns have also been taken with many of the liquids. The 
far field patterns indicate a Stokes beam divergence of from 3 to 10 mrad dcpcitding 
on the liquid used. This is to be compared with a laser beam divergence of about 1 
mrad. The anti-Stokes far field patterns show an emission principally in the forward 
direction but also in phase matched cones. The near field photographs indicate Stokes 
emission both from the whole beam and from small filaments in the case of long cells. 
With short cells emission is observed only from the filaments, indicating that as in 
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the case with Q-switched lasers the thres; DIQ for Raoan scattering in the liquids ia 
determined by self-trapping and not by the Raman effect itself.    The sharp threshold 
for the trapping and Stokes generation is shown very clearly in Figure {&*)   . 
Dielectric reflectors were used to vary the laser intensity without changing the near 
field pattern. 

Figure (25) shows self-trapping in methanol as observed at the laser wavelength, 
at the Stokes wavelength and at the anti-Stolces wavelength.    Although the filaaents 
arc very pronounced in the stokes and anti-Stokes photographs they do not show up in 
the laser photographs.    Instead one observes a ounber of smll dark areas about the 
same size as the Stokes filaments,  suggesting that once the laser light Is trapped 
it is nearly completely converted to Stokes and anti-Stokes.    Hie size of the Stokes 
filaments varies widely depending on the material.    They range fro« about a 5 u 
diameter (resolution limited)  in carbon dlnulfide, to about a 100 tt diameter In water. 
There is also a considerable range  in size in any given «terial.    In »«thaoolt for 
example, the Stokes filaments run from 3 - bo u.    Curiously,  the anti-Stokes f 11 ■■tilts 
vary much less in size and are generally quite small.    In methanol Marly all have 
the resolution limited 5 u diameter.    More curious still  Is the fact that each of the 
anti-Stokes filaments is surrounded by from 1 to 6 concentric and nearly equally 
spaced rings of anti-Stokes light.    The diameter of the first ring variet from fila- 
ment to filament.    The fomation of th^se rings is bsllevad to he related to the so 
called.class II anti-Stokes observed in self-trapping liquids with Q-switched 
lasers^). 

One interesting and practical result cf the a«! f-iocu^lng   study is the fact that 
focusing   the laser bea~. inhibits self-trapping.    This Is shown in Fi#ir« (26) where 
the results with a collinated beam arr contracted with those with Uv laser beam 
focused   by a ^0 cm focal length lens into Ue center of the cell.    The near field 
photograph taken at the end of the cell shown little evidence of trapping in the latter 
case.    This Is true not only for acetic acid but for all of the low Kerr constant 
liquldi.    Recent experimental results indicate that •oat filamentation still dote 
occur but it only exists over a short length .war the focus of the lens.    Consequently, 
if s high quality Stokes beam is required It Is best obtained by focusing   tlw laser 
into the liquid cell and recoilinatlng afterward.    The reason trapping Is Inhibited 
in the focused   beam is not completely clear at the present time, but it is likely 
associated with the decrease in laser  intensity per unit solid angle.    Slailar     # IAL) 
Inhibition of self-focus log   in focused   bear« has been observed by other wortwrs • 

9.3   Experimental Results ■ Oases 

Recently a considerable effort ha* been devoted to transient fftl«milat«d Raman 
scattering in gases.    Tmncient conditionr. are earily achieved fry virtue of the fact 
that the llnewidths are relatively narrow, even at the high pr^ssurps required to 
reach threshold.    To   observe stimulated scattering, a test cell ^ em long was 
pressurized with the sample gas.    The output from the *tole-locked rut/ laser va« then 
focused   Into the center of thr cell with a 50 r» focal  length irns.    TV spectra 
of the stimulated rcatierlng fron gases  in the cell were recorded on Kodak II plates 
usii«   a Jarmll-Ash fjßVß Spectrograph.    The experimental results for stimulated 
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vlbratiooal »aitterlni art —JMl la ItfcU I, whld» 1UU all Uw gaaat triad. 
lb« nuabar and variety of fua« la Mblefa atlvilatad Ruaa •eatt«rij^ baa bwa obMrv«d 
3i«nia  la atron« cootrut to prwlaua work with Q-«witch«d ^^^^rf^^lHHCf MCCMtfül 
retulta ware ofctaiaed only wltb wtltaae, hydrogpa and tettt«rlua^ 0^**oe)>    xb other 
gaaae confietitlon with Prllluuln •eatt«rii^ pre-veatcd thr hulU up of etlauated Ra^an 
•eattertaf^      '• Tmeleat excitatioa with pleoMOond later palaea aot only allow« 
the •tlanlatloB of largp eroae eectlon, broad llaaa hat also vary effectively dlf- 
crJ-lwiteB ecalnet the eore> alowly rpaponiinf ftrllloala e^tterlag. 

Of all the faeee eiaetaed, the larptet eoavereloa effleleaelee uccarred for OL 
and ST,.    la hath caeee, aore than tweaty preoeat of the total laeldeat laaer eaergy 

eoaverted to Stake« eaeriy    IB OL   «ttieiUted eoatterlaf ooald ha prodioed without 
focus lag.     Stlvulated vihratlooal coatterlag la a oolllaated baa« eoald alao b» 
«rrrnit«4 in 8F., I. aad CO. hy teleeeoplag dowa the laeldeat ruby laaer beaa with a 

i teteecope.    Itarly all of the coavertlca take« plao« la the ? power Oallleaa teieacope.   learly all of the convaraloa take« place la the early 
pulset of thr trala, at It thowa la Pl«trt« (2Tb) aal (87b) for V*,   Op to 
pereeet of the «atrgy la thete lattlal paltaa eoald he eoaverted to ttakM 
verified by the depletioa of the laeldeat laaer la ll#irt(?7b) aad by direct 
«taturtaeat«.   Tbt rtatoa for t* decrtate la eoavertloa towarda the ead of the trala 
It aot eltar, hut It «ay repreteat a oaturatioa of tht vthratioaal popalatloa.   Aaother 
pottlhlllty It Uie.tM^4 uf * ftloT thermal or aeouttlc perturbatloat MMA.M 

by Pohl        , aad obwreid reotatly hy oat of tht preteat 

la the case of GO » (L aad 1.0, ttUnlated pur« routloaal aad rotatloaal-vlhra- 
tiaml    «<•*£ |G«tterU^ oould alto he prodaatd If the laeldeat ntty heaa It circularly 
polarliatd*  C^. With Q-evitehed l^en oaly hydrupa aad deuUrtu» have thoea 
• tUailtte4 rotatlooal atsttterl^1"»      *   It WJit whlth bat the l«ng*tt routloaal 
en»t teetloa of the three f»ee«, both flrtt aid Mtoad order rotatlooal aad rotatloaal* 
vlhratloaal Stoke« line« «r» excited,    fvilaaee of routloaal  «e^tterlag  la alto 
la propyL'oe.  Pl^trv(?6)«how« pure ;*9Utlaaai Ükeaa «pretrt aad correspaadlac detlto- 
atur traoaa for CD   aad Ou.    la CO   tht llatt S(L?) throuih S(?h) have beea etlfttUted, 
while la 0 , S(5) tiroi^h IflJ) htve »eea «ti«uUt«d.    The nae thlfu oh««m4 t^grre 
wiuia experliwaul error with thote reported for the tponuaeout tpeetrt^"*!   la the 
aaae of iJ), the narrouata« of the line epac.t^ \t> c^mpnruao to the ItaewUtht pre* 
elude« «a accurated ideatlfltatloa of the ttlaulated line«, lb? otss«r»*d routloaal 
«eaturtn« «paa« the refloa fro» S(lJ) to S(30) la both order«. 

Oftea the routloaal llatt ohaerved are troa4«^iesi «M tu*-**** fr« ua* e«<aur or 
•taa trllt lato tevaral eoapoatau.   tblt U believed U he the reewlt of ea optloal 
Stark effect.    Seglectlag «ay penautent aolecular dlpole «gmeat«, the Surk «hlft for 
circularly polarised light It U lowett order la pertuftattoa theory 

I 
4    ) c |B • EKB • s) (5,L?) 

where the {•aalt hat heea chotea ta the directloa of pro^datloa. Sew i   It the «alsotroplc 
part of th« rolerlfunity uator aad I U tbt laeldeat lateatity. Utlat(    ), oat «ay 
laadlly eoaf in» that the tblfU are aa tpprtclable fractloa of the toul rotuioaal 



•wror for ttm J-Uwls iavolwd, «ltd ti»t tu* •plittlat in u» rotatlooftl •hifta 
for UM dtrfrrrat «•■taua U of tl» gvter of • f«v rtci^rooal eontiavtvn,  la quali- 
tativ« ipi—I vltA thr «pllttlaf Oba^nrtd.    la «Me«,  wtverp rotational lYaadoa la 
prtaarved, tit» Start shirta ar» aiao rmapaalti* far ttm obMrrv«4 K»IT «ffaot.   For 
Y > 0 ia Bq. (5.12), UM» lonoot MMrr«r state» art a • U, eorreapoadlaf to aolacalar 
rotation la tte plant of U» «laeUrle fltld.   7ht'.  iJ tqulvaleot to elaoaleal «il#nnent. 
^irti»»r avldonet of Urn laportaae* of tat optical Stark «fftct la tte traanlont 
rtCln» ia provldod by tt» Obttnation of atlf-tmpfiat la a eoUltaUd btaa la tiw 
aaUotroplo foatt, OQL «Ml MJ>.   Ulla It eloarljr oaoa la urn mar fltld pttunw 
la ri«*r* (29). 

If llatarljr polarltad lUdt la aood la an attanpt to «fenan* •tlmUtad rotational 
Ntnaa aoattarlac» on» ••«« latt«a4 • brood vlat ■bndtd to tfeo Stokt« otdo on botn U» 
nib/ lint and on tht vibratloa Stofeot llat.   Slnllar rtoulta art found la tb» oaaa of 
feylalfb vlnf tonturlng<lu''. Bxplaaattont for tte dlfftrtncr la tetevlor trltb cirnaar 
■I llaoarljr oolarlttd ll^tt oav* boon gltM by tenM^^'oail by Cbtao and Oodlnt»11*'. 
Tte Mtton of «Ireular polarlntlon of tte otlnalatod flrtt rotational and rotational* 
vltratloanl llatt la aWaya rttarnad froa ttet of tte Ineldant laaar ^^t.   Tte aaaa 
tltaatlon la four*» la tte ttlmilatod rotational teatttrU« fron D/drofto^^^aad In 
tejrlalfh vtm seaturlnc^*^'. Ana» «apartwntal rtaaita art la «cnwatnt wltb 
taaorttleal pr*41cttona «l«lnc a forvard «ala ratio for tte opaoaltt to aaaa aaaa« 
of polarlaatlon of itl$ If tte ar.il-State« coupiu« U l^wrad'lOd'oad 610, If tbU 

'r-      •   i&k»«-.   '.r* I   A--    ir.t    '     ''.   «IM  ■am mil   fMtmt.ttmmt   mmä  rftrntlemml m*tiwmtttmm .    :r,-    r  \mk~t. :M . •-    art   •*     » Mt SSI '•» r^iA*.  :t».  xt*\ r MMHSMMMSMonA. 
Stofeaa llano ulinfiid la MJH art poUrlsad la tte aaaa aaaa« aa tte laaar llsfet, and, 
tterafort, la tte oppoalta aaaaa a« tte flrtt rotational Stotea llata, a« «xptcttd 
fron tte itpaatlal oatnrt of tte nl0»r ordar Stotea prodnetloa (Plfart 30). 

).b   Vlbrntlonal teoay Tin« tenaurtwrnt; 

Darlag ttltalttad tanaa aoatfriM not only la tte Stotea «aa» anpllf lad but ao 
alao ia tte pboaon «aw.   for «aary Stotef fdntc« rratuc^«^, an «aclttd vlbrational 
V^aMun it alao eraattd.   Sttaulatad teaan toattorlng l-st tnorrfor«, • contwoLoot vty 
or ^»»»ratine a nen tmlllbrlan population dlttrlbutlon.   Tte abort llm toait of tte 
ptaaont aap^lvtau m*m* trantloat «tiimlatcd ftetan toatteriiK • wa#rul tool for tte 
ttady of saa klattle«.   A MkJor art« of appltoatlon la la cte^lcal laaar dlasnoatlea. 
Ttert «tandart t««tiat<|uta oftaa oarr^t gltc tte daairad rtlantlon r»i»e jfidtr 
eoteltloat partlnaot to etenlcal laaai optiatlng eoadltloa«.   Steck tute «aalytla 1« 
often «aafai but blsb teaptiaturra and prtaaurtt art f«»fulrtd.   ifltb alaotrlcal 
«aaltatloft loalsod lpr«i#e «r«i el^ctronr ar* npcrawirlly sMtrattd.    Ia ttlauUt«^ 
teaaa ««attiring only tat eaelted teaar attlv« vlbratloaal ttat« la populated. 
■Sterlaant« eaa 1« ma at rooa te«p««ntart or teloir sf dralrad.   Il^i prtaaurt U 
^pilrrd for tte teaaa oacUlato'       ; tte rvinntlon ratr la llnrar ultb 
ttea tte rtault« aay te »strapo 1 *A.    If t** 1 laaar, taaa a low praaiaara lte«r. 

aay te atad la «oajanatlon «Itb a bltfi pruaaw RMaa otclllator. 
uoald ttea te atadlad U tte aapllflar. 



•iaplMt typ» of «Mwurrwtoi would bm % fluor*»c*nc* mfaurrmni.    Suet» • 
could bo ooad to totomlm Urn vlbrotloool docojr rote ia HP u SIMMB in 

Pi«urt(3L). Othor eoadMotM or» the temlool UMF UV«U la 00. und ■„O tad the first 
vlbrotioaal lovol la 00.   Prelialaary ox?*rta»eU art aou uMcr %mj 

A man p—1 tboi^n HN «iff toolt UdttlfM for doWralalag vlbrmttonal Atcay 
rato la ttoOMa la fUfifiX). Hort gor «ooitors tue «scitod •lato popaUttoa by dotoot- 
tag ■poalaMOM oBtt*8iokot »oattortag produoud by • ■■ffond blfb lateootty llgbt 
•ooroo, poMibljr aaothor iaaer.    Prior to lb» arrival of UM? «odo-ioobod ptlao trala 
•ad tb» fMorattoa of ftlaulatod Stobo« llfbt llttU or no •pontaneoua «ntl-diobr« 
llgbt would bo obMrvod 4m to tiio •boooe» of oaciud itat* pctMtlatton.   IV aatU 
StokM latettflty would build up with vtm cruatloa of vlbratlonal poiwlatlon during tba 
•odo-loeted palM trala Mrt would dtoay aftomard wltb tb» deoay mu» to be deuntlaod. 
TbU double bnaaa toetoal^ie bae boon ueed with • Q-ewitctwd rutjr Ifeer u» detcnKlne 
tb» wibratlooal dooay tine la hydrogwn «u at rooa u^oernture^    ''• Wltb tiwleot 
•tlnalatod Hanna •mtt^rii^, tnm techalqpw ana bo uned to aako wamin iwau la n 
boat of dirreront iMMf laeludlag all of UMO» lUted la Tnblo X. 
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8«cttoii 6 

QHHIXC on man 

^•l      SiopU, Nt^i Ifit«Mlty, Short PuU« >lnMa«pt 

Haetrlaal 41»elmra> riÄ«M»«r« <*!Ätu of «BitUac •.r.imr.— li<tM pulM« of vory 

• •   i.«t u»4 UMF •acltfttloe.    Spoetal «imuiAr ja^*"16»11'»148* IMV» toe« found 
fmnteulArly uaofui In •ueh appllflttlont but oftoo roqutro eanatdomfcU ami la 
eotwirueUon nnd ort not raadlly nd^ptod irxttdtntloB of irrMrularljr *tmt*i fpl—. 
SOB» porforaar«« efemctorlsMet nrt ropurtod horo for hl«h Intonstty short rulso 
injtr« «^    ' nro «Mtljr e<»wtryet«d nnd oan b« i—i to «fftelviUjr Irradtnto «artout 

>!• eonnrumtl« 

A fM*w of Ua«r eyltndiieal nbUtin« ÄUöl9»iao,U^« «or« ooMtmetod M 

in tlf433n)b «In« qiortt I\*\M of l W «all thleknoM for all laap «nvaiopaa. 
Uta ovil-flaclbU plaatie (or rubbar) tubaa «hoan atoaorbad aaehanioal ahoeltt aaaoeiatad 
• ■ • tha laar diaelttnra and affbetlvaly pravantad Mm** at tto anda of tha Imm ■ 
Tha wtra olactroda« aara toldarad >r spot «aldad to tha Inold» valla of tha aatal 
slaavaa, «dtteh providad tha noeatmry ««tortml alaetrteal eontac«.    '*4ft., eoppar, 
• :*•«. and tunnlaa« «taal alactrodoa «art taotod and all «art found to clva 
•latlar taaulta.    Mrforaanca «a« nlao aoaantially unel*ncad «ban tha laapa «ara bant 
Into «arlout roam far irmdtatian of Irrar-Uarly alapad Map las, a« la flc.(36b> 

To aafcanea tha li<ht pulaa rlaotu» aad to ainiaiM tha intarnal asplaai«a 
aaiociatod with tha Intanat short duiatian dioctarcaa. tho laapa «ara eontiau- 

.•:    a«acva*«d.    A «all continuous air laalt «a« pr«ridad In tho piflpiat Una to 
■amtatn ratid^atl m§ praaaura h\tb anty^gh ftypicaLljr 1 to ) torr^ to anoura rapid 
raprod^icibU diocfttrea initiation, but lov anovMih ll ainlalM aaploalva laap failurM. 
fto ■imlftoant ohan#ao uara ^oorvod «hon AMI oueh aa arffon, boll«, Mnoa, altroiM, 
and     5 MM tubtf.'utod for olr ll tho laapa.    Thli It eontlttwit with tht IdM 
•^o-   '►• ditcharM Ma Mrriod rr.Mr'.I. to oblation r^oduett fr» tht qMrtt Mlla 
ahlla tht r»a lai lo« prtatuM «t Mrvtd only to fbcllttata ditclarM inltiatloa. 

tlMtrleal ananor ttomca for tht laap Mt proridad by 1M indjctanea Mpaeltort 
fmrctll tabomtoritt. Sanaa M) «hleh MM conntctad to tht UMt thr^h t trig«aMd 
tMrb amp (WK, a^al    P-l*iF> tt thoM in ",c.C*Al    ?o ainlaiM psdM rlMtiaat, all 
alaotrloal coanaetlona in tha dltebarM circuit «vrt wdt t« tbort at poatlbla.    la 
tMt Mttt MVOMI laaaa «aM conntctod in faMllal with tnothar, and all «ara 
diacrarMd •i»*l>anaoutly (aaaturtd dtlay botutan laapa, Itat than 0.09 Mtae) throtMh 
tha aTarfc Mp. 

mch laap Mt tottad to dMtruction to datoralnt tho osplMlon anar^y, l.a. 
tha i'.trMrM onarcr tro>v« «bleb tht laap would fail within OM or a raw thott.    Tht 
ratluM aodt in thtM tatta Mt alMyt that of vfolant atplMlon naar tht caatar of 
tha laap anvalopa. 
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Af.«r ^•••rmlm'iar.  -f Mm «splMlon «fwrcy for ft flvan laap, «A Idantleftl 
Usp «A« rirvd at ftpprosUAtftly ••^•r.»./ p«re«nt of tte •sploaloo «wrgy and U» 
llcht |KiIa« rtMttat, duntlon, and paak tnunslty «»r« rvcorted. utln« an ;•-*• 
photodixl» and an a«elUo«eop* witli • total InatruMntal raaponM tiat ahortor ttmn 

Oporatton   r a laar at «norKtaa hl«har Uan aavanty poreont of tha asploalon 
*rfy ironoralljr raaultad In Incraaaad llcht puUa fail tUwa without aubataatt*Uy 

tneraaatn« tha paak intanaity.    Piaatiaaa war« I—il ahortor at anarciaa naar 
tha axploalon Itait, hut laap Ufa «aa «rraatly ro«*jco4 froa tha aavaml buntfrad 
rtiota oftan obtatnad at aovanty parcant af ttaa aiploaion 

^trfonauMra charactoriatlea typloal of tha laapa toatod art praaar.tod in Thblo II. 
Aa aspaetod, tha liih« pulaa riaotlaaa (lOf to 901) aara ahortoat for tha —lltat 
<?apaettara ua«d. 4ua to thalr ralativaly low inductaiw«.    ^laatiots war* al«j 
dapandant to $mm aitant on laap trnmrn'r,, «wtaraUy ineraaatna ttotirtoanily for 
loaf thin laapa ahoaa inductanea contributor ancoaaivaljr to ovamil circuit loduetanea( 
and for laraa diaattor laspa in which «all ablation apparantly 4wvalopa4 slowly dua 
to tha laraa fraa a»nnal avallahla to tha dtaclmrta.    Data for laapa a^tlbitin« 
liaattaM in ascoaa of a nicroaacond ara not ineludad In tat la I sinea convantlonal 
m* ruiod laapa car. oftan b« uaad in applioationa «bara lanaar rlaatuwa ara 
pamlaalbla. 

J».lao widths fbatwaan half intonaity points) wara «anarally craataat far 
of laraa anaro handilna capability and tandad to ba aaallast for laa^s tf saali 
diaaatar in wbleb salttii« atcaa wara apparantiy quickly daascltad by «all eolUaloaa. 
l^ab lliht intansity and ananor Imndlimr capability wara found to incraaaa with 
incraaaln« laap diaanalona and In fact wwa quit« siapl« r«lat«d to tha projactad 
araa (lan<th tiaas diaaatar) of tha laapa, as ahown la ^«i     .   Tha slapllalty of 
th« approsiiBt« aapirical ralationa of rUd( j5)aabaa It poaalbla to quickly coapart 
anarcr bandlln« eapablllttaa and w**'.mm llsht IntanaitlM for «arlous laar eonftiruf«- 
tlons.    It should b« rocoaniaad kotwr tbat «vtrapolatlca of thaa« rasults to laap« 
of wry larga diaaatar ot lanfth aay not b« Juatifiad. 

Iha two rl«htiand col\aaM la Tab I« t r«praa«nt q^suititl«« roughly Indlcatl«« 
of th« total llsht «altt«d fth« product of half powar pula« width by p«ak lieh- 
Intanaity) and of tha tat« rf rtaa of light intonaity ftha mtio of p«ab light 
Intanaity to Ugbt pulaa rlaatlaa).   Th« latt«r q^awtlty aay ba uaaful In cfeaiaetarla- 
ing laap« d«si<n«d for c«rtain applications, such as of|aalc t>« laaar «scitatlon, 
what« fast rising intansa llsht puls«s ar« rsqjlrod. " 

nts usifur a balllatlc thataopila In conjunction with «arloua fil'or« 
indicated *)at th« laap« ^aad la thaaa taat« radiatod »^r» tlan twanty parcant of tha 
•l«ctrical  .npu* <r*ro   ;nto th« 8000 to ^000 ft apacital rvrSon, «lih «or« 'Hk?  thro« 
fourth« of th« fadiation failing in tha 8000 to bO00 A fan««.    The«« «sasuraasnta, 
coablnad with tha rsauita of aavatal tssts parfataa< to «atlaato laap aaiaaivity. 
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•uc«Mt ttet within this tpvetml mag« tbm iMaf «sit MMntlAUjr a« blackbo^r 
rai:«' ri vlth t^Bpcmt^rtt in tlw 20,000 to 30*000 ^t r%n^t.    TJm corr«*pondinf 
•t«m4taney •• p«ak lr.t«fi*lty In Uw 2000 to kpOO I tiwctTal mnf« would tlma bt 
typl«tUy • f«w hundred «•tt'Ce«*. ttartdUa. A). 

At a practlau t««t for U«p« of tlw typ« toterilwd abov«, ft«» laap« 200 HI 
I *v witli 3 tm b^rva w«r« pi*c«d alorwwid* a 10 M dla by t00 ■■ Ion« qtartt call 
eontalnln« a 10     »olar tol-aMm of altbar rhoduti-w fc or T-dlaUtylamir. —-■••h:.! 
eo«arln In atlanoi.    Brcndband alrrar« of 100 parc«Rt nnd 33 parcant raflactivity, 
rvtpactivaly, war» piaead at «ithar «nd or th» call and ailgnad parpandleular to tba 
eall asls.   Whan all laapf wora •UaUtanaously flrtd In paiallal throufh tho spark 
mp, Jtlnr • total •tora4 oloctrtcal «narQ- of «bout 700 J, laaar oaclllatlon «uiuad 
at Uw oirpactad «avalan«thi of «bout 5700 A for »ho rhodMina and b600 A for th« 
eoiaarln dya>   Typical aaetllofiaph« of tna laap pulac w>d of tha eoiaarla laMr out- 
put art sboun la Hg.(j^>    Th» laaar output anar«Qf «aittad Uiroudh tha 33 parcan^ 
alrror «aa about ana JouU In meh eaaa, bain« taoutat hi«har for tba rbodMiin« dya. 
*>.!• tapra—nta ana of UM ht^hoi*   ^jtput «nar^tot rapartad to dnta for 3r«nle dy« 
laoort of thii lypa and dnonatratat ana piaetloal application of the above daacrlbad 

6.2     Ultva Mat riaahlaapc for By '.aacra 

Sinea tba 'tavalofaant if dya laaart two dlfrtrar.t approaebe« to tbt problaa of 
ru»pin# the lyac haw been rurt^ci.    taccr ma^laf MM flrct daaonatiatad In infraral 
cattttmr drat   air..- • Q-twitcbad r Jt,  laccr*  • .Wltb frequency doublln« tblc tachnlqut 
>*• iban t«tan4a4 to visible end tear M aelttlnt dyac'^i   Hare racaatly, the palcei 

.T  -v Ueer hat been osed *sih *reet tuececs to p^mf % «Vde verltiy of djres avar 
ibe   v. vlilble end neer If» regions of the spectj%ai .   Ttir fast r'.n'ti^pt 
echiev*» >   with later p-esplni «void the prob lea prettntad by tlnelat to triplet 
erattover and ratult in a rtlativaly hlfh ;onvartlon tfflclaney.    ritthl—p puaplnc 
wts flrtt dts^mtt fatal In 19&7 by Sorohln and laniarJ^r'H Hie a set tuecassful 
flashltftp« to a»*.e ere thott of fur^ttto and  'eecon,    * Mho have tchleved UsSn« 
'.n sany  »r the d/es «hlch can be ruaped vlth later pjapine.    FUthlaapt jffer tht 
t<s«anta«a »f bradbar.d punplnf and cenemlly hither ojtput anarfiet.    Contldarlnc 
thtt tht piMpin« it t one tttp proeatt, tht ovaiall efficiency la often hlfhtr. 
Tht principal 4laadvtnta«v of flatMaai« It tbat fts*. rltttlatt have not been 
tchleved to that triplet ^uenchln* lialtt *ht r.unbtr of dytt which can be »dt to 
latt.   A riathlaap with t rltttlaw of 5-10 nanottcandt tad an enerior htndUnf 
capability of a raw Joultt would offer all tht tdvantt«et of ooth atth>dt of punplnf. 

trine tht ttnl•annual rtpart period an tsparlaental effort to levite tu?h a laap 
initiated. 

ror the Initial effort« ttoia«a In hlgb voltapt, barl« tit«.rate 
earacitort wtt triad.    Thtte tre I ■aatly available in t 500 plcofhml iar«citanct 
tnd a 20 «r )0 kv opamunf voltage,    the J) kv earacitort have t ttir-resonant 
rrwiMn^y of about 50 Nef «bile the 20 r»' earacii rs htva t 60 Me ttlf-retonant 
frsqutney.    Two typat of dltchtr.wa wtrt triad, an «mcanflnad d'.echar«a In air or 
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nltrocan. and « CÄpllUry dlseterft In nitrogen.    Th« rvtults vith n t««t flxtur« 
holding thrM (3) of UM 30 kV oapncltor« tr« shown in Fig. (37).   Ibes« photographs 
r«pr«««ni «n Input •n*r& of nbo-jt 3A Joul« %t 33 kV In «ach MM.    F^r th« spcn 
arc 1.2 ea dlaattar ball alactrotei, Mparatad oy 1.5 «■ wtra usad.   UM light mitput 
ha« a 10 n««c riMtüM and » width «t hair^aaxiaua of 35 n««c.   Thi« 1« «.bout th« 
riaatUM «ip«ct«d can«id«ring th« 30 Ne •«ir-r««onant rr«qu«ncy for th« t««t fixtur«. 
Vith tht CÄpilUr/ di«?harg« UM light output had a ri««tiB« of 18 n««9 anl a width 
at taalf-aasiwai of 70 naae.    UM p««k light output i« about UM aaa«.    th« arc MI« 
1.9 ea long and canflnal to UM in«id« of a 1 MI bor« ^uart« capillary tub« with a 
0.5 v« wall thictoM««.    A pr««sur« af 3 «ta of .^ was n«c««««ry to hold off UM 33 KV 
firing voltag«; howawr. UM light output and rl««tiat w«r« ro*Ad to b« fairly 
insanaitiv« to pr«««ur« ov«r « rang« of froa 1 to d at«.   A parallal trigg«r wa« 
u««d to fir« UM laap.    Th« •law«r ri««tiai of UM capillary laap it b«li«v«d  lue 
to UM fonaticn of a hottar, saall«r diaaatar and, tharafor«, high«r inluctanca arc. 
Tha gr««t«r int«giatad light o-jtput in tha sapillary laap attributa« to th« hotter 
diacharg«.    Slat lar raaulu hav« b««n TOMM by otlMr w<Mrk«r« with ««««what «lowar 
di«chargM<I?7). 

Tha op«n air arc waa couplad with « dy« e«ll in «n «ffort to prolue« la«ing in 
an athanol solution of rhodsaina 60.    In fact, lasing wa« obtainal «v«n with only a 
30 p«rc«nt output raflactor.    Mawtvwr, UM lasing wn« vary «riatic du« principally 
to th« vary «riatic bahavior of UM op«n arc in tha pra««ns« of a naar by ground plan«. 
Attaapt« to sorrast thi« problaa w«r« un«uec«««ful. 

A« a rasult of UMM •«p«ria«nt« « aylar insulatad 30 kV «trip line capacitor 
•toriag two (2) Joula« i« und«r con«truction.    Th« «rratio b«bavi<nr of UM op«n 
arc diacharg« in tha praaanc« of UM dy« c«ll «andata« UM u«« of oapillary laap«. 
To raduc« the circuit inductanea ««vaml of th««« will b« u««d in paiallal in « «ch«ae 
•Lallar to tbat in UM 700 Joul« flaahlaap array da«crib«d in 3«ctlon 6.X. 

6.)     4oda-Lockadt Flaahlaap PM^ed CojMrin :y« :a««r at «.600 ft 

eKparia«nt« during thi« p«riod h«v« r««ult«d in what i« b«li«vad to b« th« fir«t 
»>l«-l >?k'.n4t of a flaahlaa^ puapad dy« laaar op«rating in th« blu« region of th« 
•pactrua.    ry«« «altabla for pa««lve aode-locking of «uch l««eri «re difficult to 
flni, du« to UM ««tr«Mtly larg« ab«orption cro«« «action« raquirad.    How«v«rt th«    n 
taehniqu« of intracavity aolulation at tha longitudinal aod« llfference fra^uency 
1« raadily appllaJ to a^da-locking th« r«lativ«ly long duration, high int«n«ity output 
pula«« typical of thMa laser«. 

">,« la«er  »sei in thaaa «xp«ria«nt« cooaiatad of 100 percent and 33 parcant 
raflactor« «pacad by 160 ea, vltha20cabylca dla quarts cell cenierei between 
the raflactor« and fiUad with a uH* aslar aolution of 7.iiethyU«lnW.-»ethyl 
couMrin in «thanol.    th« dy« solution flowsl through UM cell at a rate of about one 
litar par atnuta and was axcital by «sans of five spaeially constructed linsar flash- 
laap^ of th« typ« d««eribed in Section 6.1, syMietrioally plac«d alongaid« UM c«ll. 
th« laap« were firel «iaultanaou«!/ through a triggered «park ftp frcs a 3.6 aicrofarad 
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capacitor charged to 20 kV.    Tha raaulting flash nai character iced by a ha If-intensity 
duration of a feif microseconds and a ritetiae of several hundred nanoseconds. 

An acoustically driven fused quartz block was located in thd laser cavity close 
to the 100 percent reflector and periodically diffracted a few percent of the laser   . 
radiation out of the cavity by virtue of the acoustic standing wave in the block. ^    ' 
When the periodicity of the diffraction was nade equal to the 11 nsec round trip 
timnsit time of radiation in the laser cavity, the U600 ft laser output seen through 
the 33 percent reflector exhibited the mode-locked characteristics shown in Fig/3d). 

6.1»      Superradiant Traveling wave   ye laser 

In recent years a number of dye solutions have been made to läse with either 
flashlamp or laser piaping.    One striking characteristic of many of these dyes is the 
very high gain which can easily be obtained.    Neumann and   'ercher^: ■   ' have recently 
demonstrated laaing in a laser pumped rhodamine 6G solution a millimeter thick with 
cavity mirrors having a reflectivity of only a few percent.    Experiments such as this 
suggest that with a solution thickness of a few centimeters and with a somewhat higher 
pumping density, superradiant emission should be observed. 

Of particular interest is the case of pumping with picosecond duration pulses 
from a mode-locked laser. The dye inversion is then a wave traveling with a velocity 
fqual to that for a pump pulse. This situation parallels that in Shipnan's traveling 
wave nitrogen laser. &3o} Superradiant traveling wave emission has been observed from 
several polymethine cyanine dyes pumped by a mode-locked ruby laser. This technique 
offers greater simplicity and ease than the more usual mode-locking technique^1/for 
generating short dye laser pulses. 

The experimental apparatus for observing traveling wave dye laser emission is 
shown in    ig/.^Oa).    Excitation of the dye was accomplished with a mode-locked ruby 
laser^      'which produces a train of pulses each having a duration of from 2 to 5 psec 
and a peak power of up to about 5 3W.    A beam divergence of 1 mrad is typical for this 
laser.    The test cell containing the dye is 2 cm thick and is wedged so that the windows 
■ike an angle of about 10° to each other.    The length of the cell was chosen to be 
sufficiently long that stimulated emission could be achieved with a moderate dye 
concentration, yet the cell was short enough that stimulated Raman scattering in the 
solvent  (methanol) was negligible,    for photoelectric detection and for the far field 
photographs. Coming CS-7-69 filters were used to separate the dye emission from the 
ruby p anp light.    At full Intensity a slight leakage of ruby light through these 
filters does occur but this is small compared to the dye laser emission.    The additional 
filtering provided by the presence of the dye in the test cell reduces this leakage 
to below detectability. 

A superradiant traveling wave emission was observed for three dyes, cryptocyanine, 
DDI   (1,  l'-diethyl-2,2'-dicarbocyanine iodide) and DTTC  fö^'-Diethylthiatricarbocyanine 
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iodide) «ach dissolved in methanol. The results for DTTC are representative, j^ith 
this dye the emission occurs in a 130 to l80 A vide band centered at from 7920 A to 
8080 A depending on the dye concentration. Maximum output occurs with a concentration 
giving a band center at 7980 A. At this concentration the low level transmission at 
69U3 Ä through the 2 cm test cell corresponds to an optical density of 6.0. More 
than 90 percent of the incident pump light is absorbed. 

The output from the dye (Fig. 39b ) occurs as a train of pulses which follows 
more or less the overall shape of the incident pump pulse train. Par field photo- 
graphs such as that in Pig.(39c)3how that the emission takes place in a narrow beam 
with an angular divergence of about 15 mrad. As in the case of pumping with a Q- 
switched laser, O"^) the direction of polarization of the output beam is the same as 
that in the pump beam. With 1 Joule of pump energy the total energy emitted in the 
forward direction is generally from 10 to 30 mJ. The forward to backward emission 
ratio was measured photoelectrically and was found to be about 100:1, thus confirming 
the traveling wave nature of the device. 

An attempt was made to measure the pulse width directly by the two photon 
absorption-fluorescence technique. This was not successful. However, the pulse 
width can be inferred from other measurements. The high forward to backward emission 
ratio indicates that the fluorescence decay time and, therefore, the pulse duration, 
must be less than the 90 psec transit time through the cell. One indication of how 
much less is given by the fact that, if the entrance window of the dye cell is sufficiently 
thin, an emission occurs not only in the forward direction but alos in the direction 
nonnal to the outside face of this window. This emission arises due to the amplifica- 
tion of fluorescence radiation generated near the window, which travels through the 
window and is reflected back at the glass to air interface. The resultant emission 
is shown in Fig.(39d),where a window 1.5 mm thick was used. With a window twice as 
thick, as was the case in Fig.(39d)pnly a faint emission in the direction of the 
window normal is observed even with the entrance face nearly perpendicular to the 
pump beam. This indicates an appreciable decay of gain in a time equal to the difference 
in the round trip transit times for the two windows. That is to say, the pulse duration 
must be on the order of 15 psec or less. 

That such short pulses are to be expected can easily be shown. In the frame of 
reference moving with the emitted pulses the growth of the energy density, W, per Milt 
frequency interval per unit solid angle follows the relation' ^ ' 

dtW(z,t) - hvS(v)^N(z,t) = hvS(v)ffN2(z,t) (6.1) 

where S(v) is the lineshape function, S and "5 are the Einstein A and B coefficients 
per unit solid angle for given polarization and N2 and AN are the excited state 
population and inversion in the dye, respectively.    Saturation effects are ignored in 
Bq.   (6.1).    In general N2 and AN are functions both of position, z, in the moving 
frame and of time, t.    However, if the difference in group velocities of the emitted 
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dye laser pulse and the Incident pump pulse is Ignored, N2 and AN are not explicitly 
dependent on time and Bq. (6.1) can be readily integrated. 

The results are shown In Fig.(Uo) for an excited state population of the form 

K(%) = N(e-to/Tf -e"to/Tr) (6.2) 

Here the position, z, has been replaced by t0 = z/v, where v is the common group 
velocity.    For the polymethine cyanine dyes, a fluorescence decay time of Tf >50psec 
would seem to be a reasonable estimate frcjn the present experiments.    The population 
risetime would be the longer of the pump pulse duration or the Franck-Condon time'1'?) 
for the dye.    A value of Tr - 2 psec, corresponding roughly to the pump pulse duration, 
was chosen. 

From Fig. 21 it can be seen that a fairly modest gain will give a substantial 
pulse sharpening initially.      However, once the dye laser pulse duration becomes 
comparable to the pumping pulse duration, or more accurately, to the inversion risetime, 
a considerable increase in gain is required to achieve even a slight decrease in 
pulse duration.    If the dye laser emission builds up to the point that the gain 
saturates, then there nay be an additi nal pulse sharpening due to the nonlinear 
amplification. 0-36) 

Although this technique has been demonstrated only for a single class of dyes 
all emitting In the infrared region of the spectrum,  it should be possible to obtain 
visible region emission in other dyes by pumping with the second harmonic of either 
a mode-locked ruby or neodymium laser.    However, the longer lifetimes of most of the 
other common laser dyes would necessitate a very high gain or possibly strong satura- 
tion in order to obtain picosecond pulse durations. 
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Section 7 

OTHER AREAS OF INVESTIGATION 

7-1 Stimulated Emission from Laser Produced Plasmas 

The possibility of obtaining coherent radiation from laser produced plasnas is 
of great interest and some preliminary experimental and theoretical investigations of 
this possibility have been carried out. The production of ultraviolet radiation by 
laser action is hampered by the very fast spontaneous population decay which typifies 
this region of the spectrum. For efficient excitation, the pumping source must have 
a rise time comparable to w less than the spontaneous decay time. Conventional 
optical and electrical pumping sources are capable of rise times in the nanosecond 
region. A thousandfold improvement in this figure can be achieved through the use of 
picosecond laser pulses. The most general scheme for pumping would be the production 
of a plisma by laser induced breakdown in the material which is to läse. The inversion 
could then be achieved by the same mechanisms as in the more usual electrical discharge 
lasers, although the electronic temperatures are much higher in the present case. 

Some general consideratlon80are treated here and applied to the possibility 
of obtaining emission from the 3371 A line in nitrogen and from metal vapors. 
The corsideration can be extended to shorter wave lengths. Some experimental 
observations of fluorescence from metal vapors are also presented. 

The gain coefficient for an Inverted lossless medium is 

..M^MtlM (7a) 

where B is the Einstein B coefficient, g(Au) is a linewidth function and AN, the 
inversion. It is convenient to define a gain cross section, o, such that 

SH   5  . (7.2) 

In many of the low pressure, high temperature superradiant lasers which have been 
made to operate, doppler broadening is the most important line broadening mechanism. 
For the purposes of discussion, let us temporarily assume that this is so in our 
case also. Then at line center 

SHy = 0) = 2(%2)2 g^ (7.3) 

where AUQ is the doppler width (FWHM). This gives 
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where A 1« the ElnateU A c jefflder.t.    This yield* 

Since A it the reciprocal of ».he imdlatlv« tec«jr lim, «11 of Use qiaatttiM Ui 
the above relation ere eeeroreble. 

In e high dentity pleeaa of the Uad produced by UMT ladueed breeMoMi, 
the prodoednent optioel loeeee ere due to free-free ebeorptioa* 37'. 
The loee coefflciettt it given by the eelebieted faneule 

vhere Z is the degree of ionlMtlon, It is the ion density, T is tbt p( 
ture, hu is the photon energy in ev, sad 

,. o.» t« t'-Vi1^ <7-T> 

The total power gain coefficient is 

C - »-K - H» - 3.1 « 10'^ pPi 

where f - ^ • 

(7.8) 

Laser generated plasaas in ^ises typically have high plasn tssgisrSitores 
and a high degree of ioniattion. The values T • 5 K 1^ ÖK sad i • | are repreeen* 
tative of the conditions which night be achieved. The free-free losses for such 
a plasoa are indicated in Plg^i.i)as a function of wvelength and af preeetfe. It 
has been assuned that the ion density is eqtal to the particle density. 

For the 3371 A line, the doppler width is AVQ « 8.9 a 1010 see *1 at 
^ x 105 °K. 'DM radiative decay line for this Uns is kO nsec, giving A - 2.) a 
10^ eec" .   These values give for the line center f»ln croes section 

o - 1.25 a MT* en2. (7.9) 
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SCHEMATIC REPRESENTATION FOR THE BAECKLUNO TRANSFORMATION 
GIVEN BY EQ. (2-37) 
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DIAGRAM FOR SEQUENCE OF TRANSFORMATIONS GIVING 4/7 PULSE 
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FIC. 5 

PROPAGATION OF A ITT PULSE IN AN ABSORBING MEDIUM 
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FIRST TYPE OF ZERO w-PULSE 
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J920479-21 FIG. 7 
SECOND TYPE OF ZERO ir - PULSE 
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THIRD TYPE OF TT - PULSE 
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J920479-21 FIG. 9 

BREAKUP OF 6* PULSE AS DERIVED FROM SEQUENCE 

OF TRANSFORMATIONS SHOWN IN FIG. 4 
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PROPAGATION OF n- - PULSE IN AMPLIFIER 
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FREE-FREE ABSORPTION VS PRESSURE AND WAVELENGTH FIG. 41 
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